Skip to main content
Log in

Human Parathion Poisoning

A Toxicokinetic Analysis

  • Review Article
  • Published:
Toxicological Reviews

Abstract

The mortality rate of suicidal parathion poisoning is particularly high, the onset of fulminant cholinergic signs, and the patients frequently present to the emergency physician with life-threatening symptoms. Despite this uniformity, subsequent clinical course differs significantly among patients, mostly not as a result of different delays in treatment or insufficiency of primary care. Probably, the differences depend on the amount of poison absorbed and/or the disposition of the active poison, paraoxon.

We followed the toxicokinetics of parathion and tried to quantify the actual poison load. To this end, we monitored parathion-intoxicated patients (patients requiring artificial ventilation) for plasma levels of parathion and paraoxon along with the activity of erythrocyte acetylcholinesterase and its reactivatability. Plasma obidoxime concentrations were followed as well as the cumulative urinary para-nitrophenol conjugate excretion as a measure of total poison load. All patients received a standard obidoxime scheme of a 250mg bolus dose intravenously, followed by continuous infusion with 750mg per 24 hours as long as reactivation could be expected (usually 1 week). All other treatment was instituted as judged by the physician. It was recommended to use atropine at low doses to achieve dry mucous membranes, no bronchoconstriction and no bradycardia. Usually 1–2 mg/h were sufficient.

Seven selected cases are presented exemplifying toxicokinetic peculiarities. All patients were severely intoxicated, while the amount of parathion absorbed varied widely (between 0.12 and 4.4g; lethal dose 0.02–0.1g) and was generally much lower than anticipated from the reports of relatives. It remains open whether the discrepancies between reports and findings were due to exaggeration or to effective decontamination (including spontaneous vomiting, gastric lavage and activated charcoal). Absorption of parathion from the gastrointestinal tract was sometimes retarded, up to 5 days, resulting in fluctuating plasma profiles. The volume of distribution at steady-state (Vdss) of parathion was around 20 L/kg. Post-mortem analysis in one patient revealed a 66-fold higher parathion concentration in fat tissue compared with plasma, 16 days after ingestion. Biotransformation of parathion varied widely and was severely retarded in one patient receiving fluconazole during worsening of renal function, while phenobarbital (phenobarbitone) sedation (two cases) had apparently no effect. The proportion of plasma parathion to paraoxon varied from 0.3–30, pointing also to varying paraoxon elimination, as illustrated by one case with particularly low paraoxonase-1 activity. Obidoxime was effective at paraoxon concentrations below 0.5μM, provided aging was not too advanced. This concentration correlated poorly with the parathion concentration or the poison load. The data are discussed in light of the pertinent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Table I.
Fig. 9.
Table II.
Table III.

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Worek F, Bäcker M, Thiermann H, et al. Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum Exp Toxicol 1997; 16: 466–72

    Article  PubMed  CAS  Google Scholar 

  2. Johnson MK, Jacobsen D, Meredith TJ, et al. Evaluation of antidotes for poisoning by organophosphorus pesticides. Emerg Med 2000; 12: 22–37

    Article  Google Scholar 

  3. Boelcke G, Butigan N, Davar H, et al. New experiences in the toxicologically controlled therapy of an unusually serious poisoning with nitrostigmine (E605 forte) [in German]. Dtsch Med Wochenschr 1970; 95: 2516–21

    Article  PubMed  CAS  Google Scholar 

  4. Willems JL, De Bisschop HC, Verstraete AG, et al. Cholinesterase reactivation in organophosphorus poisoned patients depends on the plasma concentrations of the oxime pralidoxime methylsulphate and of the organophosphate. Arch Toxicol 1993; 67: 79–84

    Article  PubMed  CAS  Google Scholar 

  5. v Eiken S. Urinary excretion of p-nitrophenol after exposure to the pesticide ‘E 605’ [in German]. Angew Chem 1954; 66: 551–3

    Article  Google Scholar 

  6. Neal RA, Halpert J. Toxicology of thiono-sulfur compounds. Annu Rev Pharmacol Toxicol 1982; 22: 321–39

    Article  PubMed  CAS  Google Scholar 

  7. Mutch E, Blain PG, Williams FM. The role of metabolism in determining susceptibility to parathion toxicity in man. Toxicol Lett 1999; 107: 177–87

    Article  PubMed  CAS  Google Scholar 

  8. Qiao GL, Chang SK, Brooks JD, et al. Dermatoxicokinetic modeling of p-nitrophenol and its conjugation metabolite in swine following topical and intravenous administration. Toxicol Sci 2000; 54: 284–94

    Article  PubMed  CAS  Google Scholar 

  9. Chan LT, Crowley RJ, Geyer R. Detection and analysis of aminoparathion in human postmortem specimens. J Forensic Sci 1983; 28(1): 122–7

    PubMed  CAS  Google Scholar 

  10. Chrastil J, Wilson JT. 4-Nitrocatechol production from p-nitrophenol by rat liver. J Pharmacol Exp Ther 1975; 193: 631–8

    PubMed  CAS  Google Scholar 

  11. Leng G, Lewalter J. Role of individual susceptibility in risk assessment of pesticides. Occup Environ Med 1999; 56: 449–53

    Article  PubMed  CAS  Google Scholar 

  12. Michalke P. Determination of p-nitrophenol in serum and urine by enzymatic and non-enzymatic conjugate hydrolysis and HPLC: application after parathion intoxication. Z Rechtsmed 1984; 92: 95–100

    Article  PubMed  CAS  Google Scholar 

  13. Oneto ML, Basack SB, Kesten EM. Total and conjugated urinary paranitrophenol after an acute parathion ingestion. Sci Justice 1995; 35: 207–11

    Article  PubMed  CAS  Google Scholar 

  14. Morgan DP, Hetzler HL, Slach EF, et al. Urinary excretion of paranitrophenol and alkyl phosphates following ingestion of methyl or ethyl parathion by human subjects. Arch Environ Contain Toxicol 1977; 6: 159–73

    Article  CAS  Google Scholar 

  15. Arterberry JD, Durham WF, Elliott JW, et al. Exposure to parathion. Arch Environ Health 1961; 3: 476–85

    PubMed  CAS  Google Scholar 

  16. Eyer F, Eyer P. Enzyme-based assay for quantification of paraoxon in blood of parathion poisoned patients. Hum Exp Toxicol 1998; 17: 645–51

    Article  PubMed  CAS  Google Scholar 

  17. Geldmacher M, Deinzer K. Fast determination of p-nitrophenol in the urine for the demonstration of E-605 poisoning [in German]. Dtsch Med Wochenschr 1966; 91: 1381–2

    Article  PubMed  CAS  Google Scholar 

  18. Spöhrer U, Eyer P. Separation of geometrical syn/anti isomers of obidoxime by ion-pair high-performance liquid chromatography. J Chromatogr A 1995; 693: 55–61

    Article  Google Scholar 

  19. Thiermann H, Mast U, Klimmek R, et al. Cholinesterase status, pharmacokinetics and laboratory findings during obidoxime therapy in organophosphate poisoned patients. Hum Exp Toxicol 1997; 16: 473–80

    Article  PubMed  CAS  Google Scholar 

  20. Worek F, Mast U, Kiderlen D, et al. Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 1999; 288: 73–90

    Article  PubMed  CAS  Google Scholar 

  21. Kiderlen D, Worek F, Klimmek R, et al. The phosphoryl oxime-destroying activity of human plasma. Arch Toxicol 2000; 74: 27–32

    Article  PubMed  CAS  Google Scholar 

  22. Benedetti MS, Bani M. Metabolism-based drug interactions involving oral azole antifungals in humans. Drug Metab Rev 1999; 31: 665–717

    Article  Google Scholar 

  23. Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994; 330: 263–72

    Article  PubMed  CAS  Google Scholar 

  24. Furlong CE, Richter RJ, Seidel SL, et al. Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 1988; 43: 230–8

    PubMed  CAS  Google Scholar 

  25. Woodrooffe AJM, Byliss MK, Park GR. The effects of hypoxia on drug-metabolizing enzymes. Drug Metab Rev 1995; 27: 471–95

    Article  PubMed  CAS  Google Scholar 

  26. Eigenberg DA, Pazdernik TL, Doull J. Hemoperfusion and pharmacokinetic studies with parathion and paraoxon in the rat and dog. Drug Metab Dispos 1983; 11: 366–70

    PubMed  CAS  Google Scholar 

  27. Chambers JE, Carr RL, Boone JS, et al. The metabolism of organophosphorus insecticides. In: Krieger RI, editor. Handbook of pesticide toxicology. 2nd ed. San Diego (CA): Academic Press, 2001: 919–27

    Chapter  Google Scholar 

  28. Braeckman RA, Audenaert F, Willems JL, et al. Toxicokinetics of methyl parathion and parathion in the dog after intravenous and oral administration. Arch Toxicol 1983; 54: 71–82

    Article  PubMed  CAS  Google Scholar 

  29. Pena-Egido MJ, Rivas-Gonzalo JC, Marino-Hernandez EL. Toxicokinetics of parathion in the rabbit. Arch Toxicol 1988; 61: 196–200

    Article  PubMed  CAS  Google Scholar 

  30. Chadwick RW, Copeland MF, Froehlich R, et al. Interaction between γ-hexachlorocyclohexane and the gastrointestinal microflora and their effect on the absorption, biotransformation and excretion of parathion by the rat. J Agric Food Chem 1984; 32: 755–9

    Article  CAS  Google Scholar 

  31. Okonek S, Kilbinger H. Determination of acetylcholine, nitrostigmine and acetylcholinesterase activity in four patients with severe nitrostigmine (E 605 forte) intoxication. Arch Toxicol 1974; 32: 97–108

    Article  PubMed  CAS  Google Scholar 

  32. Willems JL. Poisoning by organophosphate insecticides: analysis of 53 human cases with regard to management and drug treatment. Acta Med Mil Belg 1981; 1: 7–14

    Google Scholar 

  33. Vree TB, Van der Kleijn E, Van de Bogert AG, et al. Clinical toxicology of central depressant and stimulant drugs. In: Kleijn VD, et al., editors. Clinical pharmacy and clinical pharmacology. Amsterdam: Elsevier/North-Holland Biomedical Press, 1976: 67–87

    Google Scholar 

  34. De Potter M, Muller R, Willems J. A method for the determination of some organophosphorus insecticides in human serum. Chromatographia 1978; 11: 220–2

    Article  Google Scholar 

  35. Braeckman RA. Kinetische Studie van methylparathion en parathion bij de hond. [dissertation]. Ghent: University of Ghent, 1982

    Google Scholar 

  36. Okonek S. Current viewpoints in alkylphosphate poisoning: biochemical findings, symptoms and therapy [in German]. Internist 1975; 16: 123–30

    PubMed  CAS  Google Scholar 

  37. Timchalk C. Organophosphate pharmacokinetics. In: Krieger RI, editor. Handbook of pesticide toxicology. 2nd ed. San Diego (CA): Academic Press, 2001: 929–51

    Chapter  Google Scholar 

  38. Nielsen P, Friis C, Gyrd-Hansen N, et al. Disposition of parathion in neonatal and young pigs. Pharmacol Toxicol 1991; 69: 233–7

    PubMed  CAS  Google Scholar 

  39. Aldridge WN, Barnes JM. Some problems in assessing the toxicity of ‘organophosphorus’ insecticides in mammals. Nature (Lond) 1952; 169: 345–52

    Article  CAS  Google Scholar 

  40. Frederiksson T, Bigelow JK. Tissue distribution of P32-labeled parathion. Arch Environ Health 1961; 2: 633–67

    Google Scholar 

  41. De Schryver E, De Reu L, Belpaire F, et al. Toxicokinetics of methyl paraoxon in the dog. Arch Toxicol 1987; 59: 319–22

    Article  PubMed  Google Scholar 

  42. Mourik J, de Jong LPA. Binding of the organophosphates parathion and paraoxon to bovine and human serum albumin. Arch Toxicol 1978; 41: 43–8

    Article  PubMed  CAS  Google Scholar 

  43. Erdös EG, Boggs LE. Hydrolysis of paraoxon in mammalian blood. Nature 1961; 190: 716–7

    Article  PubMed  Google Scholar 

  44. Eyer F. Simple quantitative determination of paraoxon (1–50 ng) in blood using a biological test [dissertation in German]. Munich: Ludwig Maximilians University, 2000

    Google Scholar 

  45. Butler AM, Murray M. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. J Pharmacol Exp Ther 1997; 280: 966–73

    PubMed  CAS  Google Scholar 

  46. Mutch E, Daly AK, Leathart JBS, et al. Do multiple cytochrome P450 isoforms contribute to parathion metabolism in man? Arch Toxicol 2003; 77: 313–20

    PubMed  CAS  Google Scholar 

  47. Buratti FM, Volpe MT, Meneguz A, et al. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicol Appl Pharmacol 2003; 186: 143–54

    Article  PubMed  CAS  Google Scholar 

  48. Chambers JE, Ma T, Boone JS, et al. Role of detoxication pathways in acute toxicity levels of phosphorothionate insecticides in the rat. Life Sci 1994; 54: 1357–64

    Article  PubMed  CAS  Google Scholar 

  49. Usui T, Saitoh Y, Komada F. Induction of CYP3As in HepG2 cells by several drugs: association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull 2003; 26: 510–7

    Article  PubMed  CAS  Google Scholar 

  50. Park BK, Breckenridge AM. Clinical implications of enzyme induction and enzyme inhibition. Clin Pharmacokinet 1981; 6: 1–24

    Article  PubMed  CAS  Google Scholar 

  51. Hildebrandt AG, Roots I, Speck M, et al. Evaluation of in vivo parameters of drug metabolizing enzyme activity in man after administration of clemastine, phenobarbital or placebo. Eur J Clin Pharmacol 1975; 8: 327–36

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalvo MC, Gil F, Hernandez AF, et al. Human liver paraoxonase (PON1): subcellular distribution and characterization. J Biochem Mol Toxicol 1998; 12: 61–9

    Article  PubMed  CAS  Google Scholar 

  53. Furlong CE, Li W-F, Shih DM, et al. Genetic factors in susceptibiliy: serum PON1 variation between individuals and species. Hum Ecol Risk Assess 2002; 8: 31–43

    Article  CAS  Google Scholar 

  54. Li W-F, Costa LG, Richter RJ, et al. Catalytic efficiency determines the in-vivo efficacy of PON 1 for detoxifying organophosphorus compounds. Pharmacogenetics 2000; 10: 767–79

    Article  PubMed  CAS  Google Scholar 

  55. Sams C, Mason HJ. Detoxification of organophosphates by A-esterases in human serum. Hum Exp Toxicol 1999; 18: 653–8

    Article  PubMed  CAS  Google Scholar 

  56. Derendorf H, Garrett ER. Pharmacokinetics: introduction in theory and relevance for drug therapy [in German]. Stuttgart: Wissenschaftl Verlagsges mbH, 1987

    Google Scholar 

  57. Furlong CE, Li W-F, Brophy VH, et al. The PON1 gene and detoxication. Neurotoxicology 2000; 21(4): 581–8

    PubMed  CAS  Google Scholar 

  58. Tang J, Chambers JE. Detoxication of paraoxon by rat liver homogenate and serum carboxylesterases and A-esterases. J Biochem Mol Toxicol 1999; 13: 261–8

    Article  PubMed  CAS  Google Scholar 

  59. Maxwell DM. The specificity of carboxylesterase protection against the toxicity of organophosphorus compounds. Toxicol Appl Pharmacol 1992; 114: 306–12

    Article  PubMed  CAS  Google Scholar 

  60. Lockridge O, Masson P. Pesticides and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology 2000; 21: 113–26

    PubMed  CAS  Google Scholar 

  61. Miller AD, Scott DF, Chacko TL, et al. Expression and partial purification of a recombinant secretory form of human liver carboxylesterase. Protein Expr Purif 1999; 17: 16–25

    Article  CAS  Google Scholar 

  62. Costa LG, Li W-F, Richter RJ, et al. PON1 and organophosphate toxicity. In: Costa LG, Furlong CE, editors. Paraoxonase (PON1) in health and disease: basic and clinical aspects. Boston (MA): Kluwer Academic Publishers, 2002: 165–83

    Chapter  Google Scholar 

  63. Braeckman RA, Godefroot MG, Blondeel GM, et al. Kinetic analysis of the fate of methyl parathion in the dog. Arch Toxicol 1980; 43: 263–71

    Article  PubMed  CAS  Google Scholar 

  64. Okonek S. Acute nitrostigmine intoxication in man [in German]. Intensivmed 1979; 16: 63–7

    CAS  Google Scholar 

  65. Pena-Egido MJ, Marino-Hernandez EL, Santos-Buelga C, et al. Urinary excretion kinetics of p-nitrophenol following oral administration of parathion in the rabbit. Arch Toxicol 1988; 62: 351–4

    Article  PubMed  CAS  Google Scholar 

  66. Qiao GL, Williams PL, Riviere JE. Percutaneous absorption, biotransformation, and systemic disposition of parathion in vivo in swine: I. Comprehensive pharmacokinetic model. Drug Metab Dispos 1994; 22: 459–71

    PubMed  CAS  Google Scholar 

  67. Copeland F, Cranmer M, Carroll J, et al. Fate of 14C-ring and 14C-ethyl labeled parathion in the Rhesus monkey [abstract]. Toxicol Appl Pharmacol 1971; 19: 400

    Google Scholar 

  68. Wolfe HR, Durham WF, Armstrong JF. Urinary excretion of insecticide metabolites: excretion of para-nitrophenol and DDA as indicators of exposure to parathion. Arch Environ Health 1970; 21: 711–6

    PubMed  CAS  Google Scholar 

  69. Bélanger PM, Bruguerolle B, Labrecque G. Rhythms in pharmacokinetics: absorption, distribution, metabolism, and excretion. In: Redfern PH, Lemmer B, editors. Physiology and pharmacology of biological rhythms. Berlin: Springer, 1997: 177–204

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyer, F., Meischner, V., Kiderlen, D. et al. Human Parathion Poisoning. Toxicol Rev 22, 143–163 (2003). https://doi.org/10.2165/00139709-200322030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200322030-00003

Keywords

Navigation