Skip to main content
Log in

Muscle Fatigue during High-Intensity Exercise in Children

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Children are able to resist fatigue better than adults during one or several repeated high-intensity exercise bouts. This finding has been reported by measuring mechanical force or power output profiles during sustained isometric maximal contractions or repeated bouts of high-intensity dynamic exercises. The ability of children to better maintain performance during repeated high-intensity exercise bouts could be related to their lower level of fatigue during exercise and/or faster recovery following exercise. This may be explained by muscle characteristics of children, which are quantitatively and qualitatively different to those of adults.

Children have less muscle mass than adults and hence, generate lower absolute power during high-intensity exercise. Some researchers also showed that children were equipped better for oxidative than glycolytic pathways during exercise, which would lead to a lower accumulation of muscle by-products. Furthermore, some reports indicated that the lower ability of children to activate their type II muscle fibres would also explain their greater resistance to fatigue during sustained maximal contractions.

The lower accumulation of muscle by-products observed in children may be suggestive of a reduced metabolic signal, which induces lower ratings of perceived exertion. Factors such as faster phosphocreatine resynthesis, greater oxidative capacity, better acid-base regulation, faster readjustment of initial cardiorespiratory parameters and higher removal of metabolic by-products in children could also explain their faster recovery following high-intensity exercise.

From a clinical point of view, muscle fatigue profiles are different between healthy children and children with muscle and metabolic diseases. Studies of dystrophic muscles in children indicated contradictory findings of changes in contractile properties and the muscle fatigability. Some have found that the muscle of boys with Duchenne muscular dystrophy (DMD) fatigued less than that of healthy boys, but others have reported that the fatigue in DMD and in normal muscle was the same. Children with glycogenosis type V and VII and dermatomyositis, and obese children tolerate exercise weakly and show an early fatigue. Studies that have investigated the fatigability in children with cerebral palsy have indicated that the femoris quadriceps was less fatigable than that of a control group but the fatigability of the triceps surae was the same between the two groups.

Further studies are required to elucidate the mechanisms explaining the origins of muscle fatigue in healthy and diseased children. The use of non-invasive measurement tools such as magnetic resonance imaging and magnetic resonance spectroscopy in paediatric exercise science will give researchers more insight in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Fig. 1

Similar content being viewed by others

References

  1. Edwards RHT. Biochemical basis of fatigue in exercise performance: catastrophe theory of muscular fatigue. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise V. Champaign (IL): Human Kinetics, 1983: 3–28

    Google Scholar 

  2. Sargeant AJ. Human power output and muscle fatigue. Int J Sports Med 1994; 15: 116–21

    Article  CAS  PubMed  Google Scholar 

  3. Bigland-Ritchie B. Muscle fatigue and the influence of changing neural drive. Clin O1est Med 1984; 5: 21–34

    CAS  Google Scholar 

  4. Vollestad NK. Measurement of human muscle fatigue. J Neurosci Methods 1997; 74: 219–27

    Article  CAS  PubMed  Google Scholar 

  5. Halin R, Germain P, Bercier S, et al. Neuromuscular response of young boys versus men during sustained maximal contraction. Med Sci Sports Exerc 2003; 35: 1042–8

    Article  PubMed  Google Scholar 

  6. Balsam PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol 1992; 65: 144–9

    Article  Google Scholar 

  7. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80:876–84

    CAS  PubMed  Google Scholar 

  8. Gaitanos GC, Williams C, Boobis LH, et al. Human Muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9

    CAS  PubMed  Google Scholar 

  9. Nevill ME, Bogdanis GC, Boobis LH, et al. Muscle metabolism and performance during sprinting. In: Maughan RJ, Shireffs SM, editors. Biochemistry of exercise IX. Champaign (IL): Human Kinetics, 1996: 243–59

    Google Scholar 

  10. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989; 66: 8–13

    CAS  PubMed  Google Scholar 

  11. Wootton SA, Williams C. The influence of recovery duration on repeated maximal sprints. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise V. Champaign (IL): Human Kinetics, 1983: 269–73

    Google Scholar 

  12. Oleetham ME, Boobis LH, Brooks S, et al. Human Muscle metabolism during sprint running. J Appl Physiol 1986; 61:54–60

    Google Scholar 

  13. Doré E, Diallo O, Franca NM, et al. Dimensional changes cannot account for all differences in short-term cycling power during growth. Int J Sports Med 2000; 21: 360–5

    Article  PubMed  Google Scholar 

  14. McCartney N, Heigenhauser GJ, Sargeant AJ, et al. A constant velocity cycle ergometer for the study of dynamic muscle function. J Appl Physiol 1983; 55: 212–7

    CAS  PubMed  Google Scholar 

  15. Sutton NC, Childs DJ, Bar-Or O, et al. A nonmotorized treadmill test to assess children & 20s short-term power output. Pediatr Exerc Sci 2000; 12: 91–100

    Google Scholar 

  16. Van Praagh E, Falgairette G, Bedu M, et al. Laboratory and fields tests in 7-year old boys. In: Oseid S, Carlsen KH, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 11–7

    Google Scholar 

  17. Williams CA, Dore E, James A, et al. Short term power output in 9 year old children: typical error between ergometers and protocols. Pediatr Exerc Sci 2003; 15: 302–12

    Google Scholar 

  18. Hebestreit H, Mimura KI, Bar-Or O. Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol 1993; 74: 2875–80

    CAS  PubMed  Google Scholar 

  19. Kanehisa H, Okuyama H, Ikegawa S, et al. Fatigability during repetitive maximal knee extensions in 14-year-old boys. Eur J Appl Physiol 1995; 72: 170–4

    Article  CAS  Google Scholar 

  20. Ratel S, Bedu M, Hennegrave A, et al. Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med 2002; 23: 397–402

    Article  CAS  PubMed  Google Scholar 

  21. Ratel S, Williams CA, Oliver J, et al. Effects of age and mode of exercise on power output profiles during repeated sprints. Eur J Appl Physiol 2004; 92: 204–10

    Article  PubMed  Google Scholar 

  22. Yanagiya T, Kanehisa H, Kouzaki M, et al. Effect of gender on mechanical power output during repeated bouts of maximal running in trained teenagers. Int J Sports Med 2003; 24:

  23. Williams CA, Ratel S, Armstrong N. Achievement of peak VO2 during a 90-s maximal intensity cycle sprint in adolescents. Can J Appl Physiol 2005; 30: 157–71

    Article  PubMed  Google Scholar 

  24. Lakomy HKA. The use of a non-motorised treadmill for analysing sprint performance. Ergonomics 1987; 30: 627–37

    Article  Google Scholar 

  25. Giannesini B, Cozzone PJ, Bendahan D. Non-invasive investigations of muscular fatigue: metabolic and electromyographic components. Biochimie 2003; 85: 873–83

    Article  CAS  PubMed  Google Scholar 

  26. Enoka RM. Mechanisms of muscle fatigue: Central factors and task dependency. J Electromyogr Kinesiol 1995; 5: 141–9

    Article  CAS  PubMed  Google Scholar 

  27. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74: 49–94

    Article  CAS  PubMed  Google Scholar 

  28. Westerblad H, Lee JA, Lannergren J, et al. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 1991; 261: 195–209

    Google Scholar 

  29. Kent-Braun J. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol 1999; 80: 57–63

    Article  CAS  Google Scholar 

  30. Schillings ML, Hoefsloot W, Stegeman DF, et al. Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J Appl Physiol. 2003; 90:562–8

    Article  PubMed  Google Scholar 

  31. James C, Sacco P, Jones DA. Loss of power during fatigue of human leg muscles. J Physiol 1995; 484 (Pt 1): 237–46

    CAS  PubMed  Google Scholar 

  32. Stephenson DG, Larm GD, Stephenson GM. Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 1998; 162: 229–45

    Article  CAS  PubMed  Google Scholar 

  33. Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162:261–6

    Article  CAS  PubMed  Google Scholar 

  34. Degroot M, Massie BM, Boska M, et al. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16: 91–8

    Article  CAS  PubMed  Google Scholar 

  35. Miller RG, Boska MD, Moussavi RS, et al. 31P nuclear magnetic resonance studies of high energy phosphates and pH inhuman muscle fatigue: comparison of aerobic and anaerobic exercise. J Clin Invest 1988; 81: 1190–6

    Article  CAS  PubMed  Google Scholar 

  36. Wilson JR, McCully KK, Mancini DM, et al. Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31PNMR study. J Appl Physio11988; 64: 2333–9

    CAS  PubMed  Google Scholar 

  37. Nosek IM, Fender KY, Godt RE. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 1987; 236: 191–3

    Article  CAS  PubMed  Google Scholar 

  38. Wilkie DR. Muscular fatigue: effects of hydrogen ions and inorganic phosphate. Fed Proc 1986; 45: 2921–3

    CAS  PubMed  Google Scholar 

  39. Allen DG. Skeletal muscle function: role of ionic changes in fatigue, damage and disease. Clin Exp Pharmacol Physiol 2004; 31: 485–93

    Article  CAS  PubMed  Google Scholar 

  40. Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. J Physiol 2001; 536: 657–65

    Article  CAS  PubMed  Google Scholar 

  41. Duke AM, Steele DS. Mechanisms of reduced SR Ca(2+) release induced by inorganic phosphate in rat skeletal muscle fibers. Am J Physiol Cell Physiol 2001; 281: 418–29

    Google Scholar 

  42. Sahlin K. Metabolic factors in fatigue. Sports Med 1992; 13: 99–107

    Article  CAS  PubMed  Google Scholar 

  43. Bar-Or O, Rowland T, editors. Pediatric exercise medicine: from physiological principles to health care application. Champaign (IL): Human Kinetics, 2004

  44. Beneke R, Hütler M, Jung M, et al. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol 2005; 99: 499–504

    Article  CAS  PubMed  Google Scholar 

  45. Gaul CA, Docherty D, Cicchini R. Differences in anaerobic performance between boys and men. Int J Sports Med 1995;16: 451–5

    Article  CAS  PubMed  Google Scholar 

  46. Naughton G, Carlson J, Fairweather I. Determining the variability of performance on Wingate anaerobic tests in children aged 6–12 years. Int J Sports Med 1992; 13: 512–7

    Article  CAS  PubMed  Google Scholar 

  47. Dupont G, Berthoin S, Gerbeaux M. Performance during anaerobic intermittent exercise: comparison between children and mature subjects [in French]. Sci Sports 2000; 15: 147–53

    Article  Google Scholar 

  48. Lazaar N, Ratel S, Rudolf P, et al. Performance during intermittent running exercise: effect of age and recovery duration [in French]. Biom Hum Anthropol 2002; 20: 29–34

    Google Scholar 

  49. Ratel S, Williams CA, Oliver J, et al. Effects of age and recovery duration on performance during multiple treadmill sprints. Int J Sports Med, 2006; 27: 1–8

    Article  CAS  PubMed  Google Scholar 

  50. Zafeiridis A, Dalamitros A, Dipla K, et al. Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc 2005; 37: 505–12

    Article  PubMed  Google Scholar 

  51. Zafeiridis A, Theou O, Manou V, et al. Fatigue during high intensity intermittent ’anaerobic’ exercise in preteen, teen, and adult females [abstract no. P64M13]. Proceedings of the Ninth Annual Congress European College of Sport Science; 2004 Jul3–6; Clermont-Ferrand, 351

  52. Olia MYH. Recovery of Wingate anaerobic test power following prior sprints of a short duration: a comparison between girls and women. [abstract]. In: Rowland T, editor. Pediatr Exerc Sci. 21st Symposium of the European Group of Pediatric Work Physiology; 2001 Sept 12–16; Corsendonk Priory. Champaign (IL): Human Kinetics, 2001: 273

    Google Scholar 

  53. Soares JMC, Mota P, Duarte JA, et al. Children are less susceptible to exercise-induced muscle damage than adults: a preliminary investigation. Pediatr Exerc Sci 1996; 8: 361–7

    Google Scholar 

  54. Edwards RH, Olapman SJ, NewhamDJ, et al. Practical analysis of variability of muscle function measurements in Duchenne muscular dystrophy. Muscle Nerve 1987; 10: 6–14

    Article  CAS  PubMed  Google Scholar 

  55. Scott OM, Vrbova G, Hyde SA, et al. Effects of chronic low frequency electrical stimulation on normal human tibialis anterior muscle. J Neurol Neurosurg Psychiatry 1985; 48: 774–81

    Article  CAS  PubMed  Google Scholar 

  56. Bar-Or O. The young athlete: some physiological considerations. J Sports Sci 1995; 13 Spec No: S31–3

    Google Scholar 

  57. Ratel S, Lazaar N, Doré E, et al. High-intensity intermittent activities at school: controversies and facts. J Sports Med Phys Fitness 2004; 44: 272–80

    CAS  PubMed  Google Scholar 

  58. Dotan R, Ohana S, Bediz C, et al. Blood lactate disappearance dynamics in boys and men following exercise of similar and dissimilar peak-lactate concentrations. J Pediatr Endocrinol Metab 2003; 16: 419–29

    Article  CAS  PubMed  Google Scholar 

  59. Van Praagh E, Dore E. Short-term muscle power during growth and maturation. Sports Med 2002; 32: 701–28

    Article  PubMed  Google Scholar 

  60. Colliander EB, Dudley GA, Tesch P A. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur J Appl Physiol 1988; 58: 81–6

    Article  CAS  Google Scholar 

  61. Hamada T, Sale DG, MacDougall JD, et al. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 2003; 178: 165–73

    Article  CAS  PubMed  Google Scholar 

  62. Hultman E, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog 1991; 75(Pt 3–4): 361–70

    CAS  PubMed  Google Scholar 

  63. du Plessis MP, Smit PJ, du Plessis LAS, et al. The composition of muscle fibers in a group of adolescents. In: Binkhorst RA, Kemper HCG, Saris WHM, editors. Children and exercise XI. Champaign (IL): Human Kinetics, 1985: 323–8

    Google Scholar 

  64. Fournier M, Ricca J, Taylor A W, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and de training. Med Sci Sports Exerc 1982; 14: 453–6

    Article  CAS  PubMed  Google Scholar 

  65. Glenmark B, Hedberg G, Kaijser L, et al. Muscle strength from adolescence to adulthood-relationship to muscle fibre types. Eur J Appl Physiol 1994; 68: 9–19

    Article  CAS  Google Scholar 

  66. Bell RD, MacDougall JD, Billeter R, et al. Muscle fibre types and morphometric analysis of skeletal muscle in six-year old children. Med Sci Sports Exerc 1980; 12: 28–31

    CAS  PubMed  Google Scholar 

  67. Jansson E. Age-related fiber type changes in human skeletal muscle. In: Maughan RJ, Shireffs SM, editors. Biochemistry of Exercise IX. Champaign (IL): Human Kinetics, 1996: 297–307

    Google Scholar 

  68. Lexell J, Sjostrom M, Nordlund AS, et al. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 1992; 15: 404–409

    Article  CAS  PubMed  Google Scholar 

  69. Oertel G. Morphometric analysis of normal skeletal muscles in infancy, childhood, and adolescence: an autopsy study. J Neurol Sci 1988; 88: 303–13

    Article  CAS  PubMed  Google Scholar 

  70. Dahlstrom M, Liljedahl ME, Gierup J, et al. High proportion of type I fibres in thigh muscle of young dancers. Acta Physiol Scand 1997; 160: 49–55

    Article  CAS  PubMed  Google Scholar 

  71. Eriksson BO, Karlsson J, Saltin B. Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand 1971; 217 Suppl.: 154–7

    Google Scholar 

  72. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 1973; 87: 485–97

    Article  CAS  PubMed  Google Scholar 

  73. Gollnick PD, Armstrong RB, Saubert CW, et al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 1972; 33: 312–9

    CAS  PubMed  Google Scholar 

  74. Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 1986; 7: 236–9

    Article  CAS  PubMed  Google Scholar 

  75. Kaczor JJ, Ziolkowski W, Popinigis J, et al. Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr Res 2005; 57: 331–5

    Article  CAS  PubMed  Google Scholar 

  76. Kuno S, Takahashi H, Fujimoto K, et al. Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol 1995; 70: 301–4

    Article  CAS  Google Scholar 

  77. Taylor DJ, Kefill GJ, Thompson CH, et al. Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 1997; 174: 321–4

    Article  CAS  PubMed  Google Scholar 

  78. Zanconato S, Buchthal S, Barstow TJ, et al. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 1993; 74: 2214–8

    CAS  PubMed  Google Scholar 

  79. Haralarmie G. Enzyme activities in skeletal muscle of 13–15 years old adolescents. Bull Eur Physiopathol Respir 1982; 18:65–74

    Google Scholar 

  80. Petersen SR, Gaul CA, Stanton MM, et al. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 1999; 87: 2151–6

    CAS  PubMed  Google Scholar 

  81. Falgairette G, Bedu M, Fellmann N, et al. Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol 1991; 62: 151–6

    Article  CAS  Google Scholar 

  82. Harnoncourt K, Gaisl G. Stress acidosis as a criterion for work capacity in 11-year-old school children. Acta Paediatr 1974;28: 266–73

    Google Scholar 

  83. Hebestreit H, Meyer F, Htay H, et al. Plasma metabolites, volume and electrolytes following 30-s high-intensity exercise in boys and men. Eur J Appl Physiol 1996; 72: 563–9

    Article  CAS  Google Scholar 

  84. Matejkova J, Koprivova Z, Placheta Z. Changes in acid-base balance after maximal exercise. In: Placheta Z, Brno JE, editors. Youth and physical activity. Usti nad Labem (Czech Republic): Purkyne University, 1980: 191–200

    Google Scholar 

  85. Ratel S, Duché P, Hennegrave A, et al. Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol 2002; 92: 479–85

    CAS  PubMed  Google Scholar 

  86. Berg A, Keul J. Biochemical changes during exercise in children. In: Malina RM, editor. Young athlete/biological, psychological and educational perspectives. Champaign (IL): Human Kinetics, 1988: 61–77

    Google Scholar 

  87. Armon Y, Cooper DM, Flores R, et al. Oxygen uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol 1991; 70: 841–8

    Article  CAS  PubMed  Google Scholar 

  88. Fawkner S, Armstrong N. Oxygen uptake kinetic response to exercise in children. Sports Med 2003; 33: 651–69

    Article  PubMed  Google Scholar 

  89. Mácek M, Vávra J. Relation between aerobic and anaerobic energy supply during maximal exercise in boys. In: Lavallee H, Shephard RJ, editors. Frontiers of activity and child health. Quebec: Editions Du Pelican, 1977: 157–9

    Google Scholar 

  90. Williams CA, Carter H, Jones AM, et al. Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol 2001; 90: 1700–6

    CAS  PubMed  Google Scholar 

  91. Zanconato S, Cooper DM, Armon Y. Oxygen cost and oxygen uptake dynamics and recovery with one minute of exercise in children and adults. J Appl Physiol 1991; 71: 993–8

    CAS  PubMed  Google Scholar 

  92. Yamada H, Kaneko K, Masuda T. Effects of voluntary activation on neuromuscular endurance analyzed by surface electromyography. Percept Mot Skills 2002; 95: 613–9

    PubMed  Google Scholar 

  93. Nordlund MM, Thorstensson A, Cresswell AG. Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. J Appl Physiol 2004; 96: 218–25

    Article  PubMed  Google Scholar 

  94. Paasuke M, Freline J, Gapeyeva H. Twitch contraction properties of plantar flexor muscles in pre- and post-pubertal boys and men. Eur J Appl Physiol 2000; 82: 459–64

    Article  CAS  PubMed  Google Scholar 

  95. Blimkie CJR. Age- and sex-associated variation in strength during childhood: anthropometric, morphologic, neurologic, biornxhanic, endocrinologic, genetic and physical activity correlates. In: Gisolfi CV, Larm DR, editors. Perspectives in exercise science and sport medicine: youth, exercise and sport. Vol. 2. Indianapolis (IN): Benchmark Press, 1989: 99–163

    Google Scholar 

  96. Belanger A Y, McComas AJ. Contractile properties of human skeletal muscle in childhood and adolescence. Eur J Appl Physiol 1989; 58: 563–7

    Article  CAS  Google Scholar 

  97. Bogdanis G, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 1995; 482: 467–80

    CAS  PubMed  Google Scholar 

  98. Hamilton AL, Nevill ME, Brooks S, et al. Physiological responses to maximal intermittent exercise: differences between endurance trained runners and games players. J Sports Sci 1991; 9: 371–82

    Article  CAS  PubMed  Google Scholar 

  99. Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners. Eur J Appl Physiol 1993; 67:261–5

    Article  CAS  Google Scholar 

  100. Roussel M, Bendahan D, Mattei JP, et al. 31p magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of inter subject variability. Biochim Biophys Acta 2000; 1457: 18–26

    Article  CAS  PubMed  Google Scholar 

  101. Thomas C, Sirvent P, Perrey S, et al. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. J Appl Physiol 2004; 97: 2132–8

    Article  CAS  PubMed  Google Scholar 

  102. Thomas C, Perrey S, Lambert K, et al. Monocarboxylate transporters, blood lactate removal after supramaximal exercise,and fatigue indexes in humans. J Appl Physiol 2005; 98: 804–9

    Article  CAS  PubMed  Google Scholar 

  103. Pilegaard H, Terzis G, Halestrap AP, et al. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am J Physiol 1999; 276: E843–8

    Google Scholar 

  104. Juel C. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle. Eur J Appl Physiol 2001; 86: 12–6

    Article  CAS  PubMed  Google Scholar 

  105. Freund H, Oyono-Enguelle S. The effect of supramaximal exercise on the recovery kinetics of lactate [in French]. Schweiz Z Sportmed 1991; 39: 65–76

    CAS  PubMed  Google Scholar 

  106. Welsman JR, Armstrong N. Assessing post exercise lactates in children and adolescents. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 137–53

    Google Scholar 

  107. Cumming GR. Recirculation times in exercising children. J Appl Physiol 1978; 45: 1005–8

    CAS  PubMed  Google Scholar 

  108. Angus C, Onley E, Beneke R. Blood lactate kinetics following maximal short-term sprints in children [abstract no. 124]. In: Med Sci Sports Exerc: 2005 Annual Meeting Program Supplement. 2005 Jun 1–4; Nashville (TN): American College of Sports Medicine, 2005: S18

    Google Scholar 

  109. Berthoin S, Allender H, Baquet G, et al. Plasma lactate and plasma volume recovery in adults and children following high intensity exercises. Acta Paediatr 2003; 92: 283–90

    Article  CAS  PubMed  Google Scholar 

  110. Baraldi E, Cooper DM, Zanconato S, et al. Heart rate recovery from 1 minute of exercise in children and adults. Pediatr Res1991; 29: 575–9

    Article  CAS  PubMed  Google Scholar 

  111. Armon Y, Cooper DM, Zanconato S. Maturation of ventilatory responses to 1-minute exercise. Pediatr Res 1991; 29: 362–8

    Article  CAS  PubMed  Google Scholar 

  112. Mahon AD, Anderson CS, Hipp MJ, et al. Heart rate recovery from submaximal exercise in boys and girls. Med Sci Sports Exerc 2003; 35: 2093–7

    Article  PubMed  Google Scholar 

  113. Nottin S, Vinet A, Mandigout S, et al. Left ventricular dynamics during early recovery from maximal exercise in boys and men. Med Sci Sports Exerc 2002; 34: 1951–7

    Article  PubMed  Google Scholar 

  114. Ohuchi H, Suzuki H, Yasuda K, et al. Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res 2000; 47: 329–35

    Article  CAS  PubMed  Google Scholar 

  115. Lehmann M, Keul J, Korsten-Reck U. The influence of graduated treadmill exercise on plasma catecholamines, aerobic and anaerobic capacity in boys and adults. Eur J Appl Physiol Occup Physiol 1981; 47: 301–11

    Article  CAS  PubMed  Google Scholar 

  116. Rowland TW, Maresh CM, Charkoudian N, et al. Plasma norepinephrine responses to cycle exercise in boys and men. Int J Sports Med 1996; 17: 22–6

    Article  CAS  PubMed  Google Scholar 

  117. Brooke MH, Engel WK. The histographic analysis of human muscles biopsies with regard to fibres types. 4. Children’s biopsies. Neurology 1969; 19: 591–605

    Article  CAS  PubMed  Google Scholar 

  118. Armon Y, Cooper DM, Springer C, et al. Oral [13C] bicarbonate measurement of C02 stores and dynamics in children and adults. J Appl Physiol 1990; 69: 1754–60

    CAS  PubMed  Google Scholar 

  119. Zanconato S, Cooper DM, Barstow TJ, et al. 13C02 washout dynamics during intermittent exercise in children and adults. J Appl Physiol 1992; 73: 2476–82

    CAS  PubMed  Google Scholar 

  120. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377–81

    CAS  PubMed  Google Scholar 

  121. Pandolf KB. Differentiated ratings of perceived exertion during physical exercise. Med Sci Sports Exerc 1982; 14: 397–405

    CAS  PubMed  Google Scholar 

  122. Robertson RJ. Central signals of perceived exertion during dynamic exercise. Med Sci Sports Exerc 1982; 14: 390–6

    CAS  PubMed  Google Scholar 

  123. Noble BJ, Robertson RJ. Perceived exertion. Champaign (IL): Human Kinetics, 1996

  124. Morgan WP. Psychophysiology of self-awareness during vigorous physical activity. Res Q Exerc Sport 1981; 52: 385–427

    CAS  PubMed  Google Scholar 

  125. Morgan WP. Psychological factors influencing perceived exertion. Med Sci Sports Exerc 1973; 5: 97–103

    CAS  Google Scholar 

  126. Ekblöm B, Goldbarg AN. The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiol Scand 1971; 83: 399–406

    Article  PubMed  Google Scholar 

  127. Grant S, McMillan K, Newell J, et al. Reproductibility of blood lactate threshold, 4mmol. 1–1 marker, heart rate and ratings of perceived exertion during incremental treadmill exercise in humans. Eur J Appl Physiol 2002; 87: 159–66

    Article  CAS  PubMed  Google Scholar 

  128. Robertson RJ, Goss FL, Auble TE, et al. Cross-modal exercise prescriptional absolute and relative oxygen uptake using perceived exertion. Med Sci Sports Exerc 1990; 22: 653–9

    Article  CAS  PubMed  Google Scholar 

  129. Robertson RJ, Moyna NM, Sward KL, et al. Gender comparison of RPE at absolute and relative physiological criteria. Med Sci Sports Exerc 2000; 32: 2120–9

    Article  CAS  PubMed  Google Scholar 

  130. Steed J, Gaesser GA, Weltman A. Rating of perceived exertion and blood lactate concentration during submaximal running. Med Sci Sports Exerc 1994; 26: 797–803

    Article  CAS  PubMed  Google Scholar 

  131. Bar-Or O. Age-related changes in exercise perception. In: Borg G, editor. Physical work and effort. Oxford: Pergamon Press, 1977: 255–66

  132. Duncan GE, Mahon AD, Gay JA, et al. Physiological and perceptual responses to graded treadmill and cycle exercise in male children. Pediatr Exerc Sci 1996; 8: 251–8

    Google Scholar 

  133. Larm KL. Children’s ratings of effort during cycle ergometry: an examination of the validity of two effort rating scales. Pediatr Exerc Sci 1995; 5: 407–21

    Google Scholar 

  134. Ueda T, Kurokawa T. Validity of heart rate and ratings of perceived exertion as indices of exercise intensity in a group of children while swimming. Eur J Appl PhysioI1991; 63: 200–4

    Article  CAS  Google Scholar 

  135. Borg G. Perceived exertion as an indicator of somatic stress. J Rehab Med 1970; 2: 82–8

    Google Scholar 

  136. Doherty M, Smith PM, Hughes G, et al. Rating of perceived exertion during high-intensity treadmill running. Med Sci Sports Exerc 2001; 33: 1953–8

    Article  CAS  PubMed  Google Scholar 

  137. Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 1996;29: 45–57

    CAS  Google Scholar 

  138. Carton RL, Rhodes EC. A critical review of the literature on rating scales for perceived. Sports Med 1985; 2: 198–222

    Article  CAS  PubMed  Google Scholar 

  139. Eston RG, Connolly DA. Use of ratings of perceived exertion for exercise prescription in patients receiving beta-blocker therapy. Sports Med 1996; 21: 176–90

    Article  CAS  PubMed  Google Scholar 

  140. Leung ML, Chung PK, Leung RW. An assessment of the validity and reliability of two perceived exertion rating scales among Hong Kong children. Percept Mot Skills 2002; 95: 1047–62

    PubMed  Google Scholar 

  141. Mahon AD, Marsh ML. Reliability of the rating of perceived exertion at ventilatory threshold in children. Int J Sports Med 1992; 13: 567–71

    Article  CAS  PubMed  Google Scholar 

  142. Pfeiffer KA, Pivarnik JM, Womack CJ, et al. Reliability and validity of the Borg and OMNI rating of perceived exertions cales in adolescent girls. Med Sci Sports Exerc 2002; 34: 2057–61

    Article  PubMed  Google Scholar 

  143. Utter AC, Robertson RJ, Nieman DC, et al. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc 2002; 34: 139–44

    Article  PubMed  Google Scholar 

  144. Eston RG, Larm KL. Effort perception. In: Armstrong N, van Mechelen W, editors. Paediatric exercise science and medicine. Oxford: Oxford University Press, 2000: 85–91

    Google Scholar 

  145. Lamb KL, Eston R. Effort perception in children. Sports Med 1997; 23: 139–48

    Article  CAS  PubMed  Google Scholar 

  146. Lamb KL, Eston R. Measurement of effort perception: time for a new approach. In: Welsman N, Armstrong N, Kirby B, editors. Children and exercise XIX. Exeter: Washington Singer Press, 1997: 11–23

    Google Scholar 

  147. Bar-Or O, Ward DS. Rating of perceived exertion in children. In: Bar-Or O, editor. Advances in pediatric sports sciences. Champaign (IL): Human Kinetics, 1989: 151–68

    Google Scholar 

  148. Mahon AD, Duncan GE, Howe CA, et al. Blood lactate and perceived exertion relative to ventilatory threshold: boys versus men. Med Sci Sports Exerc 1997; 29: 1332–7

    Article  CAS  PubMed  Google Scholar 

  149. Mahon AD, Gay JA, Stolen KQ. Differentiated ratings of perceived exertion at ventilatory threshold in children and adults. Eur J Appl Physiol 1998; 18: 115–20

    Article  Google Scholar 

  150. Lazaar N, Esbri C, Gandon N, et al. Modalities of submaximal exercises on ratings of perceived exertion by young girls: a pilot study. Percept Motor Skills 2004; 99: 1091–6

    PubMed  Google Scholar 

  151. Mahon AD, Ray ML. Ratings of perceived exertion at maximal exercise in children performing different graded exercise test. J Sports Med Phys Fitness 1995; 35: 38–42

    CAS  PubMed  Google Scholar 

  152. Hunter AM, St Clair Gibson A, Larmert MI, et al. Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med 2003; 37: 296–9

    Article  CAS  PubMed  Google Scholar 

  153. Psek JA, Cafarelli E. Behavior of coactive muscle during fatigue. J Appl Physiol 1993; 74: 170–5

    CAS  PubMed  Google Scholar 

  154. Snow CJ, Cooper J, Quanbury AO, et al. Antagonist cocontraction of the knee extensors during constant velocity shortening and lengthening. J Electromyogr Kinesiol 1995; 3: 185–95

    Article  Google Scholar 

  155. Osternig LR, Caster BL, James CR. Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction. Med Sci Sports Exerc 1995; 27: 805–8

    CAS  PubMed  Google Scholar 

  156. Weir J, Keefe D, Eaton J, et al. The effects of fatigue on hamstring coactivation during isokinetic knee extensions. Eur J Appl Physiol 1998; 78: 555–9

    Article  CAS  Google Scholar 

  157. Baratta R, Solomonow M, Zhou BH, et al. Muscular coactivation. The role of antagonist musculature in maintaining knee joint stability. Am J Sports Med 1988; 16: 113–22

    Article  CAS  PubMed  Google Scholar 

  158. Solomonow M, Baratta R, Zhou BH, et al. Electromyogram coactivation patterns of the elbow antagonist muscles during slow isokinetic movement. Exp Neurol 1988; 100: 470–7

    Article  CAS  PubMed  Google Scholar 

  159. Basmajian N, DeLuca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore (MD): Williams and Wilkins, 1985

    Google Scholar 

  160. Deluca CJ, Mambrito B. Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J Neurophysiol 1987; 58: 525–42

    CAS  Google Scholar 

  161. Levenez M, Kotzamanidis C, Carpentier A, et al. Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol 2005; 99: 1182–8

    Article  PubMed  Google Scholar 

  162. Kellis E, Unnithan V. Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults. Eur J Appl Physiol 1999; 79: 504–11

    Article  CAS  Google Scholar 

  163. Frost G, Dowling J, Dyson K, et al. Cocontraction in three age groups of children during treadmill locomotion. J Electromyogr Kinesiol 1997; 7: 179–86

    Article  CAS  PubMed  Google Scholar 

  164. Kellis E. Antagonist moment of force during maximal knee extension in pubertal boys: effects of quadriceps fatigue. Eur J Appl Physiol 2003; 89: 271–80

    Article  PubMed  Google Scholar 

  165. Seger J, Thorstensson A. Muscle strength and myoelectric activity in prepubertal and adult males and females. Eur J Appl Physiol 1994; 69: 81–7

    Article  CAS  Google Scholar 

  166. Kellis E, Kellis S. Effects of agonist and antagonist fatigue on muscle coactivation around the knee in pubertal boys. J Electromyogr Kinesiol 2001; 11: 307–18

    Article  CAS  PubMed  Google Scholar 

  167. Bendahan D, Confort Gouny S, Kozak Ribbens G, et al. Investigation of metabolic myopathies by 31P MRS using a standarized rest exercise recovery protocol: a survey of 800 explorations. MAGMA 1993; 1: 91–104

    Article  CAS  Google Scholar 

  168. Zange J, Grehl T, Disselhorst-Klug C, et al. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle’sdisease: a noninvasive 31P-MRS and EMG study. Muscle Nerve 2003; 27: 728–36

    Article  CAS  PubMed  Google Scholar 

  169. Radda GK. The use of NMR spectroscopy for the understanding of disease. Science 1986; 233: 640–5

    Article  CAS  PubMed  Google Scholar 

  170. Sahlin K, Areskog NH, Haller RG, et al. Impaired oxidative metabolism increases adenine nucleotide breakdown in Me ArdIe’sdisease. J Appl Physiol 1990; 69: 1231–5

    CAS  PubMed  Google Scholar 

  171. Argov Z, Bank WJ, Maris J, et al. Muscle energy metabolism in McArdle’s syndrome by in vivo phosphorus magnetic resonance spectroscopy. Neurology 1987; 37: 17204

    Google Scholar 

  172. Lewis SF, Haller RG, Cook JD, et al. Muscle fatigue in McArdle’s disease studied by 31P-NMR: effect of glucose infusion. J Appl Physiol 1985; 59: 1991–4

    CAS  PubMed  Google Scholar 

  173. Bendahan D, Confort-Gouny S, Kozak-Ribbens G, et al. 31-P NMR characterization of the metabolic anomalies associated with the lack of glycogen phosphorylase activity in human forearm muscle. Biochem Biophys Res Commun 1992; 185: 16–21

    Article  CAS  PubMed  Google Scholar 

  174. De Stefano N, Argov Z, Matthews PM, et al. Impairment of muscle mitochondrial oxidative metabolism in McArdles’sdisease. Muscle Nerve 1996; 19: 764–9

    Article  PubMed  Google Scholar 

  175. Braakhekke JP, de Bruin MI, Stegeman DF, et al. The second wind phenomenon in McArdle’s disease. Brain 1986; 109:1087–101

    Article  PubMed  Google Scholar 

  176. Linssen WH, Jacobs M, Stegeman DF, et al. Muscle fatigue in McArdle’s disease: muscle fibre conduction velocity and surface EMG frequency spectrum during ischaemic exercise. Brain 1990; 113: 1779–93

    Article  PubMed  Google Scholar 

  177. Vestergaard-Poulsen P, Thomsen C, Sinkjaer T, et al. Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study. J Appl Physiol 1995; 79: 1469–78

    CAS  PubMed  Google Scholar 

  178. Grehl T, Muller K, Vorgerd M, et al. Impaired aerobic glycolysis in muscle phosphofructokinase deficiency results in biphasic post-exercise phosphocreatine recovery in 31P magnetic resonance spectroscopy. Neuromuscul Disord 1998; 8:480–8

    Article  CAS  PubMed  Google Scholar 

  179. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 2004; 13: 82–6

    Article  Google Scholar 

  180. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med 1991;324: 364–9

    Article  CAS  PubMed  Google Scholar 

  181. Williams J, Hosking G. Type V glycogen storage disease. Arch Dis Child 1985; 60: 1184–6

    Article  CAS  PubMed  Google Scholar 

  182. Sengers RCA, Stadhouders AM, Jaspar HHJ, et al. Muscle phosphorylase deficiency in childhood. Eur J Pediatr 1980;134: 161–5

    Article  CAS  PubMed  Google Scholar 

  183. Bruno C, lester A, Bado M, et al. Muscle phosphorylase deficiency in childhood: a case report. Minerva Pediatr 1994; 46:459–62

    CAS  PubMed  Google Scholar 

  184. Bruno C, Bertini E, Santorelli FM, et al. Hyper C Kemia as the only sign of McArdle’s disease in a child. J Child Neurol 2000;

  185. Dirik E, Taskin F, Froglu Y, et al. Mcardle’s disease: a case report. Turk J Pediatr 1996; 38: 355–9

    CAS  PubMed  Google Scholar 

  186. Kristjansson K, Tsujino S, DiMauro S. Myophosphorylase deficiency: an unusually severe form with myoglobinuria. J Pediatr 1994; 125: 409–10

    Article  CAS  PubMed  Google Scholar 

  187. Lopez-Pison J, Munoz-Albillos MS, Boudet-Garcia A, et al. McArdle’s disease in a 14-year-old girl with fatigability and raised muscle enzymes. Rev Neurol 2000; 30: 932–4

    CAS  PubMed  Google Scholar 

  188. Roubertie A, Patte K, Rivier F, et al. McArdle’s disease in childhood: report of a new case. Eur J Paediatr Neurol 1998; 2:269–73

    Article  CAS  PubMed  Google Scholar 

  189. Gruetter R, Kaelin P, Boesch C, et al. Non-invasive 31P magnetic resonance spectroscopy revealed McArdle disease in an asymptomatic child. Eur J Pediatr 1990; 149: 483–6

    Article  CAS  PubMed  Google Scholar 

  190. Park JH, Niermann KJ, Ryder NM, et al. Muscle abnormalities in juvenile dermatomyositis patients: P-31 magnetic resonance spectroscopy studies. Arthritis Rheum 2000; 43: 2359–67

    Article  CAS  PubMed  Google Scholar 

  191. Slopis IM, Jackson EF, Narayana PA, et al. Proton magnetic resonance imaging and spectroscopic studies of the pathogenesis and treatment of juvenile dermatomyositis. J Child Neurol 1993; 8: 242–9

    Article  CAS  PubMed  Google Scholar 

  192. Niennann KJ, Olsen NJ, Park JH. Magnesium abnormalities of skeletal muscle in dermatomyositis and juvenile dermatomyositis. Arthritis Rheum 2002; 46: 475–88

    Article  CAS  Google Scholar 

  193. Banker BQ. Dermatomyostis of childhood, ultrastructural alteratious of muscle and intramuscular blood vessels. J Neuropathol Exp Neurol 1975; 34: 46–75

    Article  CAS  PubMed  Google Scholar 

  194. Woo M, Chung SJ, Nonaka I. Perifascicular atrophic fibers in childhood dermatomyositis with particular reference to mitochondrial changes. J Neurol Sci 1988; 88: 133–43

    Article  CAS  PubMed  Google Scholar 

  195. Emery AE. Population frequencies of inherited neuromuscular diseases: a world survey. Neuromuscul Disord 1991; 1: 19–29

    Article  CAS  PubMed  Google Scholar 

  196. Petrof BJ. The molecular basis of activity-induced muscle injury in Duchenne muscular dystrophy. Mol Cell Biochem 1998;179: 111–23

    Article  CAS  PubMed  Google Scholar 

  197. Gillis JM. Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J Muscle Res Cell Motil 1999; 20: 605–25

    Article  CAS  PubMed  Google Scholar 

  198. McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes: role in exercise-induced damage. Am J Pathol 1992; 140: 1097–109

    CAS  PubMed  Google Scholar 

  199. KefIll GJ, Taylor DJ, Dunn JF, et al. Cellular energetics of dystrophic muscle. J Neurol Sci 1993; 116: 201–6

    Article  Google Scholar 

  200. Younkin DP, Berman P, Sladky J, et al. 31P NMR studies in Duchenne muscular dystrophy: age-related metabolic changes. Neurology 1987; 37: 165–9

    Article  CAS  PubMed  Google Scholar 

  201. Kuznetsov AV, Winkler K, Wiedemann FR, et al. Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse. Mol Cell Biochem 1998;183: 87–96

    Article  CAS  PubMed  Google Scholar 

  202. Scott OM, Hyde SA, Vrbova G, et al. Therapeutic possibilities of chronic low frequency electrical stimulation in children with Duchenne muscular dystrophy. J Neurol Sci 1990; 95: 171–82

    Article  CAS  PubMed  Google Scholar 

  203. Sharma KR, Mynhier MA, Miller RG. Muscular fatigue in Duchenne muscular dystrophy. Neurology 1995; 45: 306–10

    Article  CAS  PubMed  Google Scholar 

  204. Zupan A. Long-term electrical stimulation of muscles in children with Duchenne and Becker muscular dystrophy. Muscle Nerve 1992; 15: 362–7

    Article  CAS  PubMed  Google Scholar 

  205. Scott OM, Vrbova G, Hyde SA, et al. Responses of muscles of patients with Duchenne muscular dystrophy to chronic electrical stimulation. J Neurol Neurosurg Psychiatry 1986; 49:1427–34

    Article  CAS  PubMed  Google Scholar 

  206. Yazawa K. Neonatal encephalopathy and cerebral palsy. J Nippon Med Sch 2005; 72: 85–8

    Article  PubMed  Google Scholar 

  207. Bar-Or O. Pathophysiological factors which limit the exercise capacity of the sick child. Med Sci Sports Exerc 1986; 18:276–82

    Article  CAS  PubMed  Google Scholar 

  208. Elder GC, Kirk J, Stewart G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 2003; 45: 542–50

    Article  PubMed  Google Scholar 

  209. Rose J, McGill KC. Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol 2005; 47: 329–36

    Article  PubMed  Google Scholar 

  210. Stackhouse SK, Binder-Macleod SA, Lee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve 2005; 31:594–601

    Article  PubMed  Google Scholar 

  211. Cooper DM, Poage J, Barstow TJ, et al. Are obese children truly unfit? Minimizing the confounding effect of body size on the exercise response. J Pediatr 1990; 116: 223–30

    Article  CAS  PubMed  Google Scholar 

  212. Goran M, Fields DA, Hunter GR, et al. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord 2000; 24: 841–8

    Article  CAS  PubMed  Google Scholar 

  213. Maffeis C, Schena F, Zaffanello M, et al. Maximal aerobic power during running and cycling in obese and non-obese children. Acta Paediatr 1994; 83: 113–6

    Article  CAS  PubMed  Google Scholar 

  214. Marinov B, Kostianev S, Turnovska T. Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise. Clin Physiol Func Im 2002;22: 254–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this paper to Prof. Mario Bedu (1948–2006). Mario was a practical physician, a distinguished physiologist, a humble and, above all, a genuine friend. He was Director of the Exercise Biology Laboratory (BAPS) of Clermont-Ferrand and the authors are indebted to his guidance, inspiration and fascinating scientific insights. He will not be forgotten.

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ratel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratel, S., Duché, P. & Williams, C.A. Muscle Fatigue during High-Intensity Exercise in Children. Sports Med 36, 1031–1065 (2006). https://doi.org/10.2165/00007256-200636120-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200636120-00004

Keywords

Navigation