Skip to main content
Log in

Neurodevelopment, Impulsivity, and Adolescent Gambling

  • Published:
Journal of Gambling Studies Aims and scope Submit manuscript

Abstract

The prevalence of problem and pathological gambling in adolescence and young adulthood has been found to be two- to fourfold higher than in adulthood. Given that these high rates might predict future increases across all age groups, it is important to explore the causes of the elevated rates of problem and pathological gambling among youths. This article reviews evidence for a neurobiological basis for adolescent vulnerability to problem and pathological gambling behaviors. We propose that a common trait motif of impulsivity might underlie phenomenology of pathological gambling, commonly comorbid psychiatric disorders, and related aspects of adolescent behavior. Recent advances in understanding the brain mechanisms involved in motivation, reward, and decision-making allow a discussion of neural circuitry underlying impulsivity. Emerging data indicate that important neurodevelopmental events during adolescence occur in brain regions associated with motivation and impulsive behavior. We hypothesize that immaturity of frontal cortical and subcortical monoaminergic systems during normal neurodevelopment underlies adolescent impulsivity as a transitional trait-behavior. While these neurodevelopmental processes may confer advantage by promoting a learning drive for optimal adaptation to adult roles, they may also confer an increased vulnerability to addictive behaviors such as problem and pathological gambling. An exploration of the developmental changes in neural circuitry involved in impulse control has significant implications for understanding adolescent behaviors and treating problem and pathological gambling among youths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander G. E. (1982). Functional development of frontal association cortex in monkeys: behavioral and electrophysiological studies. Neuroscience Research Progress Bulletin, 20, 471–479.

    Google Scholar 

  • Ames D., Cummings J. L., Wirshing W. C., Quinn B., Mahler M. (1994). Repetitive and compulsive behavior in frontal lobe degenerations. Journal of Neuropsychiatry & Clinical Neurosciences, 6, 100–13.

    Google Scholar 

  • Anderson S. A., Classey J. D., Conde F., Lund J. S., Lewis D. A. (1995). Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience, 67, 7–22.

    Google Scholar 

  • Anderson S. W., Bechara A., Damasio H., Tranel D., Damasio A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.

    Google Scholar 

  • Badiani A., Oates M. M., Robinson T. E. (2000). Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacologia, 151, 273–82.

    Google Scholar 

  • Bauer L. O. (2001). Antisocial personality disorder and cocaine dependence: their effects on behavioral and electroencephalographic measures of time estimation. Drug and Alcohol Dependence, 63, 87–95.

    Google Scholar 

  • Bechara A. (2001). Neurobiology of decision-making: risk and reward. Seminars in Clinical Neuropsychiatry, 6, 205–216.

    Google Scholar 

  • Bechara A., Damasio A., Damasio H., Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex, Cognition, 50, 7–15.

    Google Scholar 

  • Bechara A., Damasio H., Damasio H. R., et al. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.

    Google Scholar 

  • Bechara A., Damasio H., Damasion A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    Google Scholar 

  • Beyenburg S., Watzka M., Clusmann H., et al. (2000). Androgen receptor mRNA expression in the human hippocampus. Neuroscience Letters, 294, 25–8.

    Google Scholar 

  • Bickel W. K., Odum A. L., Madden G. J. (1999). Impulsivity and cigarette smoking: delay discounting in current, never and ex-smokers. Psychopharmacologia, 146, 447–454.

    Google Scholar 

  • Blanco C., Moreyra P., Nunes E. V., Saiz-Ruiz J., Ibanez A. (2001). Pathological gambling: Addiction or compulsion. Seminars in Clinical Neuropsychiatry, 6, 167–176.

    Google Scholar 

  • Brady K. T., Myrick H., McElroy S. (1998). The relationship between substance use disorders, impulse control disorders, and pathological agression. American Journal on Addictions, 7, 221–30.

    Google Scholar 

  • Breiter H. C., Aharon I., Kahneman D., Dale A., Shizgal P. (2001). Functional imaging of neuroal responses to expectancy and experiences of monetary gains and losses. Neuron, 30, 619–639.

    Google Scholar 

  • Breiter H. C., Gollub R. L., Weisskopf R. M., et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19, 591–611.

    Google Scholar 

  • Brown G. L., Linnoila M. I. (1990). CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. Journal of Clinical Psychiatry, 51, 31–41.

    Google Scholar 

  • Buchanan C. M., Eccles J. S., Becker J. B. (1992). Are adolescents the victims of raging hormones: evidence for activational effects of hormones on moods and behavior in adolescence. Psychological Bulletin, 111, 62–107.

    Google Scholar 

  • Cardinal R. N., Pennicott D. R., Sugathapala C. L., Robbins T. W., Everitt B. (2001). Impulsive choice induces in rats by lesions of the nucleus accumbens core. Science, 292, 2499–2501.

    Google Scholar 

  • Carr D. B., Sesack S. (1996). Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. The Journal of Comparative Neurology, 369, 1–15.

    Google Scholar 

  • Cavedini P., D'Annucci A., Ubbaldi A., et al. (2001). Pathological gambling and obsessive-compulsive spectrum disorder: Neuropsychological evidences, World Congress of Biological Psychiatry. Berlin, Germany.

  • Chambers R. A., Krystal J. K., Self D. W. (2001). A neurobiological basis for substance abuse comorbidity in schizophrenia. Biological Psychiatry, 50, 71–83.

    Google Scholar 

  • Chambers R. A., Potenza M. N. (2001). Schizophrenia and Pathological Gambling (Letter). American Journal of Psychiatry, 158, 497–498.

    Google Scholar 

  • Chambers R. A., Potenza M. N. (in press). Impulse control disorders. In Aminoff M. J., Daroff R. B. (eds), Encyclopedia of the Neurological Sciences. San Diego, CA: Academic Press.

  • Chugani H. R., Phelps M. E., Mazziotta J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 322, 487–497.

    Google Scholar 

  • Clayton R. (1992). Transitions in drug use: risk and protective factors. In Glantz M., Pickens R. (eds), Vulnerability to drug abuse. Washington, D.C.: American Psychological Association, pp. 15–52.

    Google Scholar 

  • Cote L., Crutcher M. D. (1991). The Basal Ganglia. In Kandel E. R., Schwartz J. H., Jessell T. M. (eds), Principles of Neural Science, 3 ed. Norwalk, CT: Appleton & Lange, pp. 647–659.

    Google Scholar 

  • Courchesne E. (1977). Event related brain potentials: comparison between children and adults. Science, 197, 589–92.

    Google Scholar 

  • Crean J. P., de Wit H., Richards J. B. (2000). Reward discounting as a measure of impulsive behavior in a psychiatric outpatient population. Experimental and Clinical Psychopharmacology, 8, 155–162.

    Google Scholar 

  • Cunningham-Williams R. M., Cottler L. B. (2001). The epidemiology of pathological gambling. Seminars in Clinical Neuropsychiatry, 6, 155–166.

    Google Scholar 

  • Cunningham-Williams R. M., Cottler L. B., Compton W. M., Spitznagel E. L. (1998). Taking chances: problem gamblers and mental health disorders-results from the St. Louis Epidemiologic Catchment Area Study. American Journal of Public Health, 88, 1093–1096.

    Google Scholar 

  • Damasio H., Grabowski T., Frank R., Galaburda A. M., Damasio A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1105.

    Google Scholar 

  • Davidson R. J., Putnam K. M., Larson C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science, 289, 591–5.

    Google Scholar 

  • Derevensky J. L., Gupta R. (2000). Prevalence estimtes of adolescent gambling: a comparison of the SOGS-RA, DSM-IV-J, and the GA 20 Questions. Journal of Gambling Studies, 16, 227–252.

    Google Scholar 

  • DiClemente C., Story M., Murray K. (2000). On a roll: the process of initiation and cessation of problem gambling among adolescents. Journal of Gambling Studies, 16, 289–313.

    Google Scholar 

  • DSM-IV-TR (2000): Diagnostic and Statistical Manual of Mental Disorders (4th Ed.-Text Revision). Washington, D.C.: American Psychiatric Association.

  • Eisen S. A., Slutske W. S., Lyons M. J., et al. (2001). The genetics of pathological gambling. Seminars in Clinical Neuropsychiatry 6, 195–204.

    Google Scholar 

  • Evenden J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146, 348–61.

    Google Scholar 

  • Feinberg I. (1983). Scizophrenia: Caused by a fault in programmed synaptic elimination during adolescence. Journal of Psychiatric Research, 17, 319–334.

    Google Scholar 

  • Feinberg I., Hibi S., Carlson V. R. (1977). Changes in the EEG amplitude during sleep with age. In Nandy K., Sherwin I. (eds), Aging Brain and Senile Dementia. New York: Plenum Press, pp. 85–98.

    Google Scholar 

  • Ferster C. B., Skinner B. F. (1957). Schedules of reinforcement. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Filipek P. A., Richelme C., Kennedy D. N., Caviness V. S. Jr. (1994). The young adult human brain: An MRI-based morphometric analysis. Cerebral Cortex, 4, 344–360.

    Google Scholar 

  • Finch D. M. (1996). Neurophysiology of converging synaptic inputs from th rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudat/putamen and nucleus accumbens. Hippocampus 6, 495–512.

    Google Scholar 

  • Finlay J.M., Zigmond M.J. (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochemical Research, 22, 1387–1394.

    Google Scholar 

  • Flavell J. H. (1963). The developmental psychology of Jean Piaget. New York: Van Norstrand.

    Google Scholar 

  • Fuller R. W. (1996). Fluoxetine effects on serotonin function and aggressive behavior. Annals of the New York Academy of Sciences, 794, 90–7.

    Google Scholar 

  • Gerstein D., Hoffmann J., Larison C., et al. (1999). Gambling impact and behavior study: National Opinion Resarch Center, University of Chicago.

  • Giedd J. N., Snell J. W., Lange N., et al. (1996). Quantative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6, 551–560.

    Google Scholar 

  • Goldman-Rakic P. S. (1987). Circuitry of the primate prefrontal cortex and regulation of behavior by representational memory. In Plum F. (ed), Handbook of Physiology, section 1, Vol 5. Bethesda, MD: American Psysiological Society, pp. 373–417.

    Google Scholar 

  • Goodin D. S., Squires K. C., Henderson B. H., Starr A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalography and Clinical Neurophysiology, 44, 447–458.

    Google Scholar 

  • Gorski R. (1999). Development of the cerebral cortex: XV. Sexual differentiation of the centra nervous system. American Academy of Child and Adolescent Psychiatry, 38, 344–346.

    Google Scholar 

  • Granger R., Wiebe S., Taketani M., Lynch G. (1996). Distinct memory circuits composing the hippocampal region. Hippocampus, 6, 567–578.

    Google Scholar 

  • Grant S. J., Contoreggi C. C., London E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.

    Google Scholar 

  • Groenewegen H. J., Wright C. I., Uylings H.B.M. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11, 99–106.

    Google Scholar 

  • Gupta R., Derevensky J. L. (2000). Adolescents with gambling problems: from research to treatment. Jounral of Gambling Studies, 16, 315–342.

    Google Scholar 

  • Gurden H., Tassin J. P., Jay T. M. (1999). Integrety of mesocortical dopaminergic system is necessary for complete expression of in vivo hippocmapal-prefrontal cortex long-term potentiation. Neuroscience, 94, 1019–1027.

    Google Scholar 

  • Heckers S., Rauch S. L., Goff D., et al. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1, 318–323.

    Google Scholar 

  • Holden C. (2001). Behavioral addictions: Do they exist? Science, 294, 980–982.

    Google Scholar 

  • Huttenlocher P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163, 195–205.

    Google Scholar 

  • Intrator N. (1998). Competitive Learning. In Arbib MA (ed.), The Hand Book of Brain Theory and Neural Networks. Cambridge, MA: The MIT Press, pp. 220–223.

    Google Scholar 

  • Jacobs D. E. (2000). Juvenile gambling in North America: an analysis of long term trends and future prospects. Journal of Gambling Studies, 16, 119–152.

    Google Scholar 

  • James K. C. (1999). National gambling impact study commission: final report to congress.

  • Jentsch J. D., Taylor J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373–390.

    Google Scholar 

  • Johnson B. D., Muffler J. (1997). Sociocultural. In Lowinson J. H., Ruiz P., Millman R. B., Langrod J. G. (Eds.), Substance Abuse a Comprehensive Textbook. Baltimore: Williams & Wilkins, pp. 107–1117.

    Google Scholar 

  • Kalivas P. W. (1993). Neurotransmiter regulation of dopamine neurons in the ventral tegmental area. Briain Research Reviews, 18, 75–113.

    Google Scholar 

  • Karreman M., Westerink B.H.C., Moghaddam B. (1996). Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. Journal of Neurochemistry, 67, 601–607.

    Google Scholar 

  • Kety S. S. (1956). Human cerebral blood flow and oxygen consumption as related to aging. Association of Research in Nervous and Mental Disease, 35, 31–45.

    Google Scholar 

  • Kirtzer M. F. (1997). Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. Journal of Comparative Neurology, 379, 247–60.

    Google Scholar 

  • Koepp M. J., Gunn R. N., Lawrence A. D., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.

    Google Scholar 

  • Kolomiets B. P., Deniau J. M., Mailly P., Menetrey A., Thierry A. M. (2001). Segregation and convergence of infomation flow through the cortico-subthalamic pathways. Journal of Neuroscience, 21, 5764–5772.

    Google Scholar 

  • Lambe E., Krimer L. S., Goldman-Rakic P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. Journal of Neuroscience, 20, 8780–8787.

    Google Scholar 

  • Lavin A., Grace A. A. (1994). Modulation of dorsal thalamic cell activity by the venral pallidum: its role in the regulation of thalamocortical activity by the basal ganglia. Synapse, 18, 104–127.

    Google Scholar 

  • Leary K., Dickerson M. (1985). Levels of arousal in high-and low frequency gamblers. Behavior Research & Therapy, 23, 635–640.

    Google Scholar 

  • Leckman J. F., Cohen D. J. (1996). Tic Disorders. In Lewis M. (ed.), Child and adolescent psychiatry. Baltimore: Williams & Wilkins, pp. 622–629.

    Google Scholar 

  • Legault M., Wise R. (2001). Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. European Jounral of Neurosciece, 13, 819–28.

    Google Scholar 

  • Lesieur H. (2000). Types, lotteries, and substance abuse among problem gamblers: commentary on “Illegal behaviors in problem gambling: analysis of data from a gambling helpline.” Journal of the Amercian Academy of Psychiatry and Law, 28, 404–407.

    Google Scholar 

  • Lewis D. A. (1997). Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology, 16, 385–398.

    Google Scholar 

  • Lipska B. K., Jaskiw G. E., Chrapusta S., Karoum F., Weinberger D. R. (1992). Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Research, 585, 1–6.

    Google Scholar 

  • Lipska B. K., Weinberger D. R. (1994). Gonadectomy does not prevent novelty or drug-induced motor hyperresponsivness in rats with neonatal hippocmapal damage. Brain Research. Developmental Brain Research, 78, 253–8.

    Google Scholar 

  • Ljungberg T., Apicella P., Schultz W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67, 145–163.

    Google Scholar 

  • London E. D., Ernst M., Grant S., Bonson K., Weinstein A. (2000). Orbitofrontal cortex and human drug abuse: functional imaging. Cerebral Cortex, 10, 334–342.

    Google Scholar 

  • Lorincz A., Buzsaki G. (2000). Two-phase computational model training long-term memories in the entorhinal-hippocampal region. Annals of the New York Academy of Sciences, 911, 83–111.

    Google Scholar 

  • Madden G. J., Petry N. M., Badger G. J., Bickel W. K. (1997). Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: drug and monetary rewards. Experimental and Clinical Psychopharmacology, 5, 256–262.

    Google Scholar 

  • Makris N., Meyer J. W., Bates J. F., Yeterian E. H., Kennedy D. N., Caviness V. S. (1999). MRI-based topographic parcellation of human white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage, 9, 18–45.

    Google Scholar 

  • Masterman D. L., Cummings J. L. (1997). Frontal-subcortical circuits: the anatomical basis of executive, social and motivational behaviors. Journal of Psychopharmacology, 11, 107–114.

    Google Scholar 

  • McAllister T. W. (1992). Neuropsyschiatric sequelae of head injuries. Psychiatric Clinics of North America, 15, 395–413.

    Google Scholar 

  • McClelland J. L., McNaughton B. L., O'Reilly R. C. (1995). Why are therecomplementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.

    Google Scholar 

  • Minshew N. J., Goldstein G., Munez L. R., Payton J. B. (1992). Neuropsychological functioning in nonmentally retarded austistic individuals. Journal of Clinical & Experimental Neuropsychology, 14, 749–61.

    Google Scholar 

  • Moore S. M., Rosenthal D. A. (1992). Venturesomeness, impulsiveness, and risky behavior among older adolescents. Perceptual and Motor Skills, 76, 98.

    Google Scholar 

  • Mulder A. B., Arts M.P.M., Lopes da Silva F. H. (1997). Short-and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo. European Journal of Neuroscience, 9, 1603–1611.

    Google Scholar 

  • Nestler E., Aghajanian G. (1997). Molecular and cellular basis of addiction. Science 278, 58–62.

    Google Scholar 

  • Nestler E. J. (2001). Psychogenomics: opportunities for understanding addiction. Journal of Neuroscience, 21, 8324–8327.

    Google Scholar 

  • Nordin C., Eklundh T. (1999). Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectrums, 4, 25–33.

    Google Scholar 

  • Nudo R. J., Masterson R. B. (1986). Stimulation-induced {14C}2-deoxy-glucose laberling of synaptic activity in the cnetral auditory system. Journal of Comparative Neurology, 245, 553–565.

    Google Scholar 

  • O'Donnell P., Greene J., Pabello N., Lewis B. L., Grace A. A. (1999). Modulation of cell firing in the nucleus accumbens. Annals of the New York Academy of Sciences, 877, 157–175.

    Google Scholar 

  • O'Donnell P. O., Grace A. A. (1995). Synaptic interactions among excitatroy afferents to the nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. The Journal of Neuroscience, 15, 3622–3639.

    Google Scholar 

  • Ongur D., Price J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans. Cerebral Cortex, 10, 206–219.

    Google Scholar 

  • Panksepp J. (1998a). Rough-and tumble play: The brain sources of joy. Affective Neuroscience. New York: Oxford University Press, pp. 280–299.

    Google Scholar 

  • Panksepp J. (1998b). SEEKING Systems and anticipatory States of the Nervous System. Affetive Neuroscience. New york: Oxsford University Press, pp. 144–163.

    Google Scholar 

  • Panksepp J. (1998c). The varieties of love and lust: neural control of sexuality. Affective Neuroscience. New York: Oxford University Press, pp. 225–245.

    Google Scholar 

  • Patterson C. M., Newman J. P. (1993). Reflectivity and learning from aversive events: toward a psychological mechanism for syndromes of disinhibition. Psychological Review, 100, 716–36.

    Google Scholar 

  • Paus T., Zijdenbos A., Worsley K., et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283, 1908–1911.

    Google Scholar 

  • Pennartz C.M.A., Ameerun R. F., Groenewegen H. J., Lopez da Silva F. H. (1993). Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. European Jounral of Neuroscience, 5, 107–17.

    Google Scholar 

  • Pennartz C.M.A., Groenewegen H. J., Lopez da Silva F. H. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioral, electrophysiological and anatomical data. Progress in Neurobiology, 42, 719–761.

    Google Scholar 

  • Peterson B. S. (1995). Neuroimaging in child and adolescent neuropsychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 34, 1560–1576.

    Google Scholar 

  • Petry N. M. (2001a). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacologia, 154, 243–250.

    Google Scholar 

  • Petry N. M. (2001b). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482–487.

    Google Scholar 

  • Petry N. M. (2001c). Substance abuse, pathological gambling, and impulsiveness. Drug and Alcohol Dependence, 63, 29–38.

    Google Scholar 

  • Petry N. M., Casarella T. (1999). Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug and Alchohol Dependence 56, 25–32.

    Google Scholar 

  • Piazza P. V., Deminiere J. M., Le Moal M., Simon H. (1989). Factors ther predict individual vulnerability to amphetamine self-administration. Science, 245, 1511–1513.

    Google Scholar 

  • Potenza M. N. (2001). The Neurobiology of Pathological Gambling. Seminars in Clinical Neuropsychiatry 6, 217–226.

    Google Scholar 

  • Potenza M. N., Hollander E. (2002). Pathological Gambling and Impulse Control Disorders. In Nemeroff C., Coyle J., Charney D., Davis K. (Eds.), Neuropsychopharmacology: the 5th Generation of Progress. Baltimore: Lippincott, Williams and Wilkins. p. 1725–1741.

    Google Scholar 

  • Potenza M. N., Steinberg M. A., McLaughlin S. D., Wu R., Rounsaville B. J., O'Malley S. S. (2000). Illegal behaviors in problem gambling: analysis of data from a gambling helpline. Journal of the American Academy of Psychiatry and Law, 28, 389–403.

    Google Scholar 

  • Potenza M. N., Wilber M. K. (2001). Neuroimaging studies of pathological gambling and substance dependence. Psychiatric Times, 17.

  • Raine A., Lencz T., Bihrele S., LaCasse L., Colletti P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.

    Google Scholar 

  • Ravel S., Sardo P., Legallet E., Apicella P. (2001). Reward unpredictability inside and outside of a task context as a determinant of the responses of tinically active neurons in the monkey striatum. Journal of Neuroscience, 21, 5730–5739.

    Google Scholar 

  • Reigier D. A., Farmer M. E., Rae D. S., et al. (1990). Comorbidity of mental disorders with alcohol and other drugs of abuse. Journal of the American Medical Association, 264, 2511–2518.

    Google Scholar 

  • Robertson L. C. (1996). Perceptual disturbance in focal neurological diseases. In Fogel B. S., Schiffer R. B., Rao S. M. (Eds.), Neuropsychiatry. Baltimore: Williams & Wilkins, pp. 345–364.

    Google Scholar 

  • Robinson T. E., Berridge K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291.

    Google Scholar 

  • Rogers R. D., Everitt B., Baldacchino A., et al. (1999). Dissociable defecits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.

    Google Scholar 

  • Rogers R. D., Robbins T. W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinion in Neurobiology, 11, 250–257.

    Google Scholar 

  • Roy A., De Jong J., Linnoila M. (1989). Extraversion in pathological gamblers. Archives of General Psychiatry, 46, 679–681.

    Google Scholar 

  • Rutherford L. C., Nelson S. B., Turrigiano G. G. (1998). BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron, 21, 521–530.

    Google Scholar 

  • Sano M., Marder K., Dooneief G. (1996). Basal ganglia diseases. In Fogel B. S., Schiffer R. B., Rao S. M. (Eds.), Neuropsychiatry. Baltimore: Williams & Wilkins, pp. 805–834.

    Google Scholar 

  • Schmajuk N. A., Christionsen B., Cox L. (2000). Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behavioral Neurosceince, 114, 659–670.

    Google Scholar 

  • Self D. W., Nestler E. J. (1998). Relapse to drug-seeking:neural and molecular mechanisms. Drug and Alcohol Dependence, 51, 49–60.

    Google Scholar 

  • Shaffer H. J. (2000). Introduction: Youth Gambling. Journal of Gambling Studies, 16, 113–114.

    Google Scholar 

  • Shaffer H. J., Hall M. N. (2001). Updating and refining prevalence estimates of disordered gambling behavior in the United States and Canada. Canadian Journal of Public Health, 92, 168–172.

    Google Scholar 

  • Shaffer H. J., Hall M. N., J.V.B. (1999). Estimating the prevalence of disordered gambling behavior in the United States and Canada: A research synthesis. American Jounral of Public Health, 89, 1369–1376.

    Google Scholar 

  • Shinohara K., Yanagisawa A., Kagota Y., et al. (1999). Physiological changes in Pachinko players; beta-endorphin, catacholamines, immune system substances and heart rate. Applied Human Sciences, 18, 37–42.

    Google Scholar 

  • Shughrue P. J., Merchenthaler I. (2000). Estrogen is more than just a “sex hormine”: novel sites for estrogen action in the hippocampus. Frontiers in Neuroendocrinology 21, 95–101.

    Google Scholar 

  • Siegel J., Shaughnessy M. F. (1995). There's a first time for everything: understanding adolescence. Adolescence, 30, 217–221.

    Google Scholar 

  • Sizonenko P. C. (1978): Endocrinology in preadolescents and adolescents. American Journal of Diseases of Children, 132, 704–712.

    Google Scholar 

  • Slutske W. S., Eisen S., True W. R., Lyons M. J., Goldberg J., Tsuang M. (2000). Common genetic vulnerability for pathological gambling and alchohol dependence in men. Archives of General Psychiatry, 57, 666–674.

    Google Scholar 

  • Sowell E. R., Thompson P. M., Tessner K. D., Toga A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 8819–8829.

    Google Scholar 

  • Spinelli D. N., Jensen F. E., Prisco G. V. (1980). Early experience effect on dendritic branching in normally reared kittens. Experimental Neurology, 68, 1–11.

    Google Scholar 

  • Spitzer M. (1999): The mind within the net. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Spunt B., Dupont I., Lesieur H., Liberty H. J., Hunt D. (1998). Pathological gambling and substance misuse: a review of the literature. Substance Use and Misuse, 33, 2535–2560.

    Google Scholar 

  • Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The Journal of Neuroscience, 21, RC, 157.

    Google Scholar 

  • Swanson L. W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain research, 886, 113–164.

    Google Scholar 

  • Takeuchi Y., Matsushita H., Sakai H., Kawano H., Yoshimoto K., Sawada T. (2000). Developmental changes in cerebrospinal fluid concentrations of monoamine-related substances revealed with a Coulochem electrode array system. Journal of Child Neurology, 15, 267–70.

    Google Scholar 

  • Taveres H., Zilberman M., Beites F., Gentil V. (2001). Gender differences in gambling progression. Journal of Gambling Studies, 17, 151–160.

    Google Scholar 

  • Taylor J. R., Jentsch J. D. (2001). Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocine, d-Amphetamine and 3,4-methylenedioxymethamphetamine (“Ecstasy”). Biological Psychiatry, 50, 137–43.

    Google Scholar 

  • Tsuchida K., Ujike H., Kanzaki A., Fujiwara Y., Akiyama K. (1994). Ontogeny of enhanced striatal dopamine release in rats with methamphetamine-inuced behavioral sensitization. Pharmacology, Biochemistry & Behavior, 47, 161–9.

    Google Scholar 

  • Virkunnen M., Rawlins R., Tokola R. (1994). CSF biolochemistries, glucose metabolism, and diurnal activity rythms in alcoholic violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 20–27.

    Google Scholar 

  • Volkow N. D., Fowler J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex, 10, 318–325.

    Google Scholar 

  • Waelti P., Dickinson A., Schultz W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.

    Google Scholar 

  • Wexler B. E., Gottschalk C. H., Fullbright R. F., et al. (2001). fMRI of cocaine craving. American Journal of Psychiatry 158, 86–95.

    Google Scholar 

  • White S. R., Obradovic T., Imel K. M., Wheaton M. J. (1996). The effects of methelenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Progress in Neurobiology, 49, 455–479.

    Google Scholar 

  • Williams B. R., Ponesse J. S., Schachar R. J., Logan G. D., Tannock R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35, 205–213.

    Google Scholar 

  • Winters K. C., Anderson N. (2000). Gambling involvement and drug use among adolescents. Journal of Gambling Studies, 16, 175–198.

    Google Scholar 

  • Winters K. C., Stinchfield R., Fulkerson J. (1990). Adolescenct gambling behavior in Minnesota: a benchmark, Report to the Department of Human Services Mental Health Division. Duluth, MN: Center for Addiction Studies, University of Minnesota.

    Google Scholar 

  • Woo T. U., Pucak M. L., Kye C. H., Matus C. V., Lewis D. A. (1997). Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience, 80, 1149–1158.

    Google Scholar 

  • Yakovlev P. I., Lecours A. R. (1967). The myelogenetic cycles of regional maturation of the brain. Philadelphia: Davis Co.

    Google Scholar 

  • Yang C. R., Mogensen G. J. (1985). An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience, 15, 1015–1024.

    Google Scholar 

  • Yates T. (1996). Theries of Cognitive Development. In Lewis M. (ed.), Child and Adolescent Psychiatry. Baltimore: Williams & Wilkins, pp. 134–155.

    Google Scholar 

  • Youngren K. D., Daly D. A., Moghaddam B. (1993). Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. The Journal of Pharmacology and Experimental Therapeutics, 264, 289–293.

    Google Scholar 

  • Zarrow M. X., Naqvi R. H., Denenberg V. H. (1969). Androgen-induced precocious puberty in the female rat and its inhibition by hippocampal lesions. Endocrinology, 84, 14–9.

    Google Scholar 

  • Zuckerman M. (1993). P-impulsive sensation seeking and its behavioral, psychophysiological and biochemical correlates. Neuropsychobiology, 28, 30–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, R.A., Potenza, M.N. Neurodevelopment, Impulsivity, and Adolescent Gambling. J Gambl Stud 19, 53–84 (2003). https://doi.org/10.1023/A:1021275130071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021275130071

Navigation