Skip to main content
Log in

Depression, Selective Serotonin Reuptake Inhibitors, and Osteoporosis

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

An increasing number of studies suggest an association between depression and osteoporosis. In a mouse model, depression induces bone loss, mediated by brain-to-bone sympathetic signaling. Depression and bone antianabolic sympathetic tone are alleviated by increasing central serotonin (5-hydroxytryptamine, 5-HT) levels. However, selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressants, increase extracellular 5-HT levels but have deleterious skeletal effects. The skeletal serotonergic system consists of 5-HT receptors and the 5-HT transporter (5-HTT) in osteoblasts and osteocytes. 5-HTT is a transmembrane protein targeted by SSRIs. 5-HT restrains osteoblastic activity, thus leading to bone loss. Apparently, the negative skeletal effects of the peripheral SSRI-induced increase in 5-HT outweighs the skeletal benefits resulting from the enhanced central 5-HT antidepressant and antisympathetic activity. Overall, major depression appears as an important risk factor for osteoporosis. However, antidepressants, mainly SSRIs, should be evaluated in view of the causal relationship between depression and bone loss, and vis-à-vis their skeletal adverse effects. Patients with depressive disorders should undergo a routine skeletal evaluation and receive timely antiosteoporotic therapy, especially when SSRI treatment is prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. •• Yirmiya R, Bab I: Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry 2009, 66:423–432. This article reports the most comprehensive meta-analysis demonstrating a significant correlation between MDD and low bone mass, which is stronger in women than in men and in pre- than postmenopausal women. The article further provides a review of the studies dealing with depression and bone and portrays depression as a risk factor for osteoporosis.

    Article  PubMed  Google Scholar 

  2. Murray CJ, Lopez AD: Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997, 349:1498–1504.

    Article  CAS  PubMed  Google Scholar 

  3. Riggs BL, Khosla S, Melton LJ 3rd: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002, 23:279–302.

    Article  CAS  PubMed  Google Scholar 

  4. Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition. Arlington, VA: American Psychiatric Association; 1994.

  5. • Cizza G, Primma S, Coyle M, et al.: Depression and osteoporosis: a research synthesis with meta-analysis. Horm Metab Res 2010, 42:467–482. This study shows that the low BMD is associated with MDD and involves the anterior-posterior spine, femoral neck, and total femur, suggesting that depression-associated low bone mass is site independent.

    Article  CAS  PubMed  Google Scholar 

  6. • Wu Q, Magnus JH, Liu J, et al.: Depression and low bone mineral density: a meta analysis of epidemiologic studies. Osteoporos Int 2009, 20:1309–1320. This meta-analysis found that depression is associated with a significantly decreased BMD, with a substantially lower BMD in depressed women and in cases of clinical depression.

    Article  CAS  PubMed  Google Scholar 

  7. •• Yirmiya R, Goshen I, Bajayo A, et al.: Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 2006, 103:16876–16881. Using CMS, a mouse model for depression, this article suggests a causal relationship whereby depression induces bone loss, mainly by inhibiting bone formation. The article further portrays the sympathetic nervous system as the main pathway communicating depressive signals to the skeleton.

    Article  CAS  PubMed  Google Scholar 

  8. • Dorn LD, Susman EJ, Pabst S, et al.: Association of depressive symptoms and anxiety with bone mass and density in ever-smoking and never-smoking adolescent girls. Arch Pediatr Adolesc Med 2008, 162:1181–1188. Consistent with the increased association between depression and low bone mass in premenopausal women, this article demonstrates an association between depressive symptoms and low bone density in adolescent girls, implicating depression in the inhibition of bone mass accrual.

    Article  PubMed  Google Scholar 

  9. Gold DT, Solimeo S: Osteoporosis and depression: a historical perspective. Curr Osteoporos Rep 2006, 4:134–139.

    Article  PubMed  Google Scholar 

  10. Ilias I, Alesci S, Gold PW, Chrousos GP: Depression and osteoporosis in men: association or casual link? Hormones (Athens) 2006, 5:9–16.

    Google Scholar 

  11. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC: Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998, 102:274–282.

    Article  CAS  PubMed  Google Scholar 

  12. Elefteriou F: Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 2008, 473:231–236.

    Article  CAS  PubMed  Google Scholar 

  13. Lu XY: The leptin hypothesis of depression: a potential link between mood disorders and obesity? Curr Opin Pharmacol 2007, 7:648–652.

    Article  CAS  PubMed  Google Scholar 

  14. Karsenty G: Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 2006, 4:341–348.

    Article  CAS  PubMed  Google Scholar 

  15. Tam J, Trembovler V, Di Marzo V, Petrosino S, et al.: The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 2008, 22:285–294.

    Article  CAS  PubMed  Google Scholar 

  16. Hill MN, Carrier EJ, McLaughlin RJ, et al.: Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 2008, 106:2322–2336.

    Article  CAS  PubMed  Google Scholar 

  17. Bajayo A, Goshen I, Feldman S, et al.: Central IL-1 receptor signaling regulates bone growth and mass. Proc Natl Acad Sci U S A 2005, 102:12956–12961.

    Article  CAS  PubMed  Google Scholar 

  18. Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al.: Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2008, 13:717–728.

    Article  CAS  PubMed  Google Scholar 

  19. Adler UC, Marques AH, Calil HM: Inflammatory aspects of depression. Inflamm Allergy Drug Targets 2008, 7:19–23.

    Article  CAS  PubMed  Google Scholar 

  20. Mundy GR: Osteoporosis and inflammation. Nutr Rev 2007, 65:S147–S151.

    Article  PubMed  Google Scholar 

  21. Yu B, Becnel J, Zerfaoui M, et al.: Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J Pharmacol Exp Ther 2008, 327:316–323.

    Article  CAS  PubMed  Google Scholar 

  22. Roggia C, Gao Y, Cenci S, et al.: Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 2001, 98:13960–13965.

    Article  CAS  PubMed  Google Scholar 

  23. Poirier MF, Canceil O, Baylé F, et al.: Prevalence of smoking in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2002, 26:529–537.

    Article  PubMed  Google Scholar 

  24. Klungsøyr O, Nygård JF, Sørensen T, Sandanger I: Cigarette smoking and incidence of first depressive episode: an 11-year, population-based follow-up study. Am J Epidemiol 2006, 163:421–432.

    Article  PubMed  Google Scholar 

  25. Steuber TL, Danner F: Adolescent smoking and depression: which comes first? Addict Behav 2006, 31:133–136.

    Article  PubMed  Google Scholar 

  26. Lorentzon M, Mellström D, Haug E, Ohlsson C: Smoking is associated with lower bone mineral density and reduced cortical thickness in young men. J Clin Endocrinol Metab 2007, 92:497–503.

    Article  CAS  PubMed  Google Scholar 

  27. Gerdhem P, Obrant KJ: Effects of cigarette-smoking on bone mass as assessed by dual-energy X-ray absorptiometry and ultrasound. Osteoporos Int 2002, 13:932–936.

    Article  CAS  PubMed  Google Scholar 

  28. Chakkalakal DA: Alcohol-induced bone loss and deficient bone repair. Alcohol Clin Exp Res 2005, 29:2077–2090.

    Article  PubMed  Google Scholar 

  29. Turner RT, Sibonga JD: Effects of alcohol use and estrogen on bone. Alcohol Res Health 2001, 25:276–281.

    CAS  PubMed  Google Scholar 

  30. Zalloua PA, Hsu YH, Terwedow H, et al.: Impact of seafood and fruit consumption on bone mineral density. Maturitas 2007, 56:1–11.

    Article  PubMed  Google Scholar 

  31. Kroeze WK, Kristiansen K, Roth BL: Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem 2002, 2:507–528.

    Article  CAS  PubMed  Google Scholar 

  32. Raymond JR, Mukhin YV, Gelasco A, et al.: Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001, 92:179–212.

    Article  CAS  PubMed  Google Scholar 

  33. Talley NJ: Serotoninergic neuroenteric modulators. Lancet 2001, 358:2061–2068.

    Article  CAS  PubMed  Google Scholar 

  34. Wade PR, Chen J, Jaffe B, et al.: Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci 1996, 16:2352–2364.

    CAS  PubMed  Google Scholar 

  35. McNicol A, Israels SJ: Platelet dense granules: structure, function and implications for haemostasis. Thromb Res 1999, 95:1–18.

    Article  CAS  PubMed  Google Scholar 

  36. Egermayer P, Town GI, Peacock AJ: Role of serotonin in the pathogenesis of acute and chronic pulmonary hypertension. Thorax 1999, 54:161–168.

    Article  CAS  PubMed  Google Scholar 

  37. Lee SL, Wang WW, Lanzillo JJ, Fanburg BL: Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture. Am J Physiol 1994, 266:L46–L52.

    CAS  PubMed  Google Scholar 

  38. Warden SJ, Bliziotes MM, Wiren KM, et al.: Neural regulation of bone and the skeletal effects of serotonin (5-hydroxytryptamine). Mol Cell Endocrinol 2005, 242:1–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cherian PP, Cheng B, Gu S, et al.: Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 2003, 278:43146–43156.

    Article  CAS  PubMed  Google Scholar 

  40. Bliziotes M, Eshleman A, Burt-Pichat B, et al.: Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone 2006, 39:1313–1321.

    Article  CAS  PubMed  Google Scholar 

  41. Rand M, Reid G: Source of ‘serotonin’ in serum. Nature 1951, 168:385.

    Article  CAS  PubMed  Google Scholar 

  42. •• Yadav VK, Ryu J-H, Suda N, et al.: Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008, 135:825–837. This article shows that gut-derived 5-HT reaches bone via the blood circulation and inhibits osteoblast proliferation, bone formation, and bone density by activating osteoblastic Htr1b receptor and CREB. It is the first report implicating gut- rather than bone cell-derived 5-HT in the regulation of skeletal remodeling.

    Article  CAS  PubMed  Google Scholar 

  43. Yadav VK, Balaji S, Suresh PS, et al.: Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 2010, 16:308–312.

    Article  CAS  PubMed  Google Scholar 

  44. • Collet C, Schiltz C, Geoffroy V, et al.: The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J 2008, 22:418–427. This article reports a low bone mass phenotype in female Htr2b receptor null mice, due to restrained osteoblast recruitment. Compared with Yadav et al. [42••], these findings suggest an opposite skeletal role for 5-HT, namely, stimulation of bone formation and bone mass.

    Article  CAS  PubMed  Google Scholar 

  45. Gustafsson BI, Westbroek I, Waarsing JH, et al.: Long-term serotonin administration leads to higher bone mineral density, affects bone architecture, and leads to higher femoral bone stiffness in rats. J Cell Biochem 2006, 97:1283–1291.

    Article  CAS  PubMed  Google Scholar 

  46. Bonnet N, Bernard P, Beaupied H, et al.: Various effects of antidepressant drugs on bone microarchitectecture, mechanical properties and bone remodeling. Toxicol Appl Pharmacol 2007, 221:111–118.

    Article  CAS  PubMed  Google Scholar 

  47. •• Yadav VK, Oury F, Suda N, et al.: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138:976–989. This article shows that 5-HT in the brain downregulates the skeletal antianabolic sympathetic tone, thus assigning opposite skeletal effects to central and peripheral 5-HT signaling.

    Article  CAS  PubMed  Google Scholar 

  48. Ziere G, Dieleman JP, van der Cammen TJ, et al.: Selective serotonin reuptake inhibiting antidepressants are associated with an increased risk of nonvertebral fractures. J Clin Psychopharmacol 2008, 28:411–417.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Bab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bab, I., Yirmiya, R. Depression, Selective Serotonin Reuptake Inhibitors, and Osteoporosis. Curr Osteoporos Rep 8, 185–191 (2010). https://doi.org/10.1007/s11914-010-0026-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-010-0026-z

Keywords

Navigation