In a recent article, Robertson commented on our study of seat belts and death in a crash. Robertson wrote: “What is not explained adequately by the theory [about misclassification of seat belt use] is the sudden gap in police reported use by the dead and survivors that appeared in the mid-1980s”.

Robertson’s criticism seems misplaced, as we offered no theory to explain changes in the prevalence of belt use. We reported that among front seat occupant pairs in which one or both died, the prevalence of belt use decreased from 12% in 1975 to 4% in 1980, and then rose to 40% in 1998. Explaining these changes, however, was not the focus of our paper. Using matched cohort methods, we noted that the risk ratio for death, comparing belted with unbelted occupants, was 0.59 using data from 1975–83, and 0.39 using data from 1986–98. We examined theories that might explain why these risk ratio estimates changed over time. We presented evidence against the theory that seat belts have become more effective. The observed changes in risk ratio estimates alone cannot tell us which estimates are least subject to bias.

One of us has reported that there is some degree of both differential and non-differential misclassification of belt use; but the amount of error in recent data suitable for a matched-cohort analysis was so trivial, and biases toward 1 and toward 0 so balanced, that the misclassification did not appreciably influence the risk ratio estimate. Robertson interpreted these results as showing only that trained crash investigators were prone to differential misclassification as police investigators. Whatever the correct interpretation, we and Robertson agree that additional measures of seat belt use would be useful. We hope that information from electronic crash recorders will be added to publicly available data, such as the Crashworthiness Data System (CDS). It might be feasible for the CDS to assess some crashes with a second investigator assigned to determine belt use only by vehicle inspection, without knowledge of occupant outcomes or the police report. To minimize costs, this additional investigation could be reserved for those crashes with front seat occupant pairs among whom at least one died. This would allow a matched cohort analysis to compare risk ratio estimates using three sources of belt information: (1) police reports; (2) the usual CDS investigation; and (3) an investigator who could not be biased by knowledge of the outcome.

Robertson’s criticism is incorrect. When multiple imputation is used to deal with missing data on a covariate, the imputation model needs to preserve relationships between that covariate and other key variables that will be used in the main analysis. These other key variables include both exposure and outcome. In contrast, Robertson argues that measures of crash outcome should not be used to impute values on a covariate which will later enter the main analysis as a predictor of crash outcome. In our study, velocity change during the crash (delta-V) was a clear confounder: when known, larger delta-V was associated with higher case fatality and also with greater likeliness of being unrestrained. However, delta-V was often missing, and missingness was related both to restraint use and to crash outcome, which motivated our use of imputation.

The problem with Robertson’s argument can be illustrated by considering how imputation was done under these conditions for a subject with missing data on delta-V. The form

| Table 1 Hypothetical data for a cohort study of 100000 persons who crashed, classified by seat belt use and death. Percents and arrows show amount and direction of misclassification |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Misclassification type | True belt use prevalence | Belted Died Lived | Case fatality Risk ratio |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| None | 6% | Yes 108 5892 0.0180 0.60 | No 2820 91180 0.0300 reference |
| Differential | 6% | Yes 107 6439 0.0166 0.54 | No 2821 90633 0.0302 reference |
| 35% | Yes 558 41621 0.0132 0.38 | No 2022 55799 0.0350 reference |
| Non-differential | 6% | Yes 63 5937 0.0105 0.35 | No 2820 91180 0.0300 reference |
| Non-differential | 35% | Yes 408 35343 0.0114 0.38 | No 1910 62339 0.0297 reference |

References

Bias in estimates of seat belt effectiveness

In his recent commentary entitled “Bias in estimates of seat belt effectiveness” Robertson criticizes our study of seat and shoulder belts in relation to crash injury risk. He writes: “In one of the recent studies claiming high seatbelt effectiveness, missing data on velocity changes in crashes were imputed partly from injury severity scores, again a cause imputed from an effect and then used as a control in the study, a true scientific ‘no-no’.” Robertson’s criticism is incorrect. When multiple imputation is used to deal with missing data on a covariate, the imputation model needs to preserve relationships between that covariate and other key variables that will be used in the main analysis. These other key variables include both exposure and outcome. In contrast, Robertson argues that measures of crash outcome should not be used to impute values on a covariate which will later enter the main analysis as a predictor of crash outcome.

In our study, velocity change during the crash (delta-V) was a clear confounder: when known, larger delta-V was associated with higher case fatality and also with greater likeliness of being unrestrained. However, delta-V was often missing, and missingness was related both to restraint use and to crash outcome, which motivated our use of imputation.

The problem with Robertson’s argument can be illustrated by considering how imputation was done under these conditions for a subject with missing data on delta-V. The form

www.injuryprevention.com
of multiple imputation that we used involved
drawing several delta-V values from the distri-
bution of known values among subjects who
were similar to the one with missing data. (Tech-
nically, values were drawn randomly from a
bootstrap sample of these potential
data donors, but since this detail affects only
the variance of imputed values and not their
expected value, it can be ignored here.)

By Robertson's argument, even if the subject
with missing data on delta-V was known to have
died in the crash, that fact should have been
ignored, and he or she should have received imputed
values drawn from the distribution of delta-V among
other-
similar fatalities and survivors com-
bin ed. Because most occupants survived, this
implies that most of the imputed delta-V values
for fatalities would have come from survivors—who, as a group, were in crashes with
lower delta-V. Imputed delta-V values for fatal
cases would thus have been systemati-
cally biased downward compared with known
values. Imputed delta-V values for survivors
would have been biased upward, because
some of them came from fatal cases. In fact,
among subjects with imputed values, delta-V
would no longer have behaved as a con-
founder at all, since the imputation model
would have wiped out any association be-
tween delta-V and outcome among them.

What difference does this make in terms of
the relative risk estimates for restraint use?
Simulation suggests that it makes. Suppose
that case fatality in 10,000 crashes is consid-
ered in relation to restraint use and delta-V
dichotomized into high or low, for simplicity).
Say that in the absence of any missing data, in
high-delta-V crashes, case fatality is 100/1000
among restraint users and 200/4000 in
non-users. In low-delta-V crashes, case fatality
is 160/4000 in restraint users and 100/1000 in
non-users. Thus the true relative risk is exactly
0.4 in each delta-V stratum. Also by construc-
tion, high delta-V is associated with higher
case fatality and with lower use of restraints,
so that delta-V is a confounder.

Now let us consider how different analysis
approaches perform, depending on the miss-
ding data mechanism. Table 1 shows three
missing data patterns.

1. Delta-V is missing completely at random
(MCAR): a random 40% of values are missing
at all combinations of exposure, outcome, and
the true value of delta-V.

2. Delta-V is missing more often in some exposure-outcome combinations than in oth-
ers. The proportions shown are those observed
in our study. However, missingness does not
depend on the true value of delta-V, condi-
tional on exposure and outcome. This pattern
is generally termed missing at random (MAR).

3. Missingness on delta-V varies not only by
exposure and outcome, but also by the true
value of delta-V. This pattern is termed missing
not at random (MNAR).

Table 2 shows the relative risk that would be
obtained in each of these situations using each
of three methods for handling missing data.
When the analysis is restricted to cases with
complete data on delta-V, the observed relative
risk is biased toward 1.0 except when delta-V
is missing completely at random—a situation
that did not match our data and that probably
rarely occurs in practice. If imputation is
carried out by ignoring crash outcome when
imputing delta-V values, as Robertson advo-
cates, the relative risk is always biased.

Ironically, the observed relative risks actually
exaggerate the effectiveness of restraints,
because the imputation method thwarts re-
moval of some of the confounding by delta-V.
When imputation of delta-V is done condi-
tional on crash outcome, the relative risk is
unbiased under the MAR and MNAR patterns,
and it is less biased than either of the other
analytic approaches under the MNAR pattern.
In short, both theory and simulation results
indicate that the method we used to impute
delta-V was sound, in contrast to Robertson's
alternative, and we stand by it.

References
1 Robertson LS. Bias in estimates of seat belt
2 Rivara FP, Koepsell TD, Grossman DC, et al. Effectiveness of automatic shoulder belt
systems in motor vehicle crashes. JAMA
3 Schafer JL. Analysis of incomplete
multivariate data. New York: Chapman &
Hall, 1997: 143.
4 Greenland S, Finkle WD. A critical look at
methods for handling missing covariates in
epidemiological regression analysis. Am J
Epidemiol 1993;142:1255–64.

No tea until three?

Scalds are the most common cause of burn
injuries in preschool children.

We performed a retrospective study at the
Wessex Regional Burns Unit, Salisbury, UK,
which yielded information on the pattern of
scald injuries in children under the age of 5
years during the period 1995–99 inclusive.
These results were compared with similar
studies published from the same unit from

Altogether 276 children were admitted with
scalds, and case notes were retrieved in 215
cases. Eighty five per cent of children were
under the age of 3 years with the greatest pro-
portion being in the age range of 1–2 years;
59% of scalds occurred in boys. Forty one
per cent of scalds were due to a spilt hot drink.
Water in hot kettles and baths accounted for
only 16% and 17%, respectively.

Figures from the Child Accident Prevention
Trust report for 1999 reveal that hot liquids
were the cause of 70% of thermal injuries in
children, with hot drinks being the single
most common cause. The way in which tea
and coffee are prepared appear to influence
the pattern of scalds. A number of scalds
resulted when the carer's back was turned in
order to fetch milk.

Figures for scald admissions show no
discriminable decrease over the three study peri-
ods despite the population at risk and the
cause of scald injuries being clearly
identified.

We suggest that the parent held child
health record would be a useful tool to
ducate parents about the risk of spilt hot
drinks in this vulnerable population. Educat-
ing health visitors to emphasise these issues,
targeting playgrounds and nurseries, and using
the media more effectively are other ways of
addressing this problem. It is imperative that
more information on preventative strategies is
provided if a reduction in scalds is to be seen.

K Ali, J Spinks
Salisbury District Hospital, Salisbury, UK,
keyanayak@hotmail.com

Table 1 Missing data patterns

<table>
<thead>
<tr>
<th>Missing data pattern</th>
<th>True delta-V</th>
<th>Proportion with missing data on delta-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted</td>
<td>Not restricted</td>
<td></td>
</tr>
<tr>
<td>Complete at random</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Low delta-V</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Missing at random</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td>High delta-V</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td>Missing not at random*</td>
<td>0.32</td>
<td>0.48</td>
</tr>
<tr>
<td>Low delta-V</td>
<td>0.42</td>
<td>0.58</td>
</tr>
</tbody>
</table>

*See text.

Table 2 Performance of alternative approaches to handling missing data on delta-V

<table>
<thead>
<tr>
<th>Missing data pattern</th>
<th>Delta-V</th>
<th>Observed relative risk for restraint use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Restrict to cases with complete data</td>
</tr>
<tr>
<td>Missing completely at random</td>
<td>High</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0.40</td>
</tr>
<tr>
<td>Missing at random</td>
<td>High</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0.40</td>
</tr>
<tr>
<td>Missing not at random*</td>
<td>High</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0.40</td>
</tr>
</tbody>
</table>

*See text.

The World Report on Violence and Health is a watershed publication, marking a turning point in violence prevention efforts. It offers a framework to stimulate coordinated preventive action and research across types of violence; to address social, economic, and policy factors that transcend national boundaries; and to pursue violence prevention efforts on a regional or global scale.

The report presents violence as a growing, yet preventable public health problem at a time when the problem of violence is among the priority agenda items of many nations. At the United Nations (UN) meeting on UN Collabo-
ration for the Prevention of Intentional Violence held in November 2001, the UN recognized the global and widespread impact of interpersonal violence on health, development, human rights, human security, and peace and acknowledged that the multiple and complex causes of interpersonal violence require a multidisciplinary, multicultur-
al, and cross-sectoral approach. The report charges injury professionals and their allies with an interest in primary and secondary prevention and research, involving discussions and debates about violence and concrete and practical ways to implement the recommen-
dations of the report. It behooves us all to get involved.

Joan Serra Hoffman
Division of Violence Prevention, National Center for Injury Prevention and Control, US Centers for Disease Control and Prevention, Atlanta; jzp3@cdc.gov

Reference

Falls in Older People: Risk Factors and Strategies for Prevention.

This book has been written with a view to consolidating the now substantial body of research on falls aetiology, and the growing literature on proven falls prevention mea-

ures. It does not include falls injury and the specific prevention of injuries arising as the result of a fall, such as that provided by external hip protectors. The authors have written for readers with a medical, allied health, or research background. Many falls prevention practitioners with a health promotion or health science background will also find this book an invaluable resource.

The book is in three sections: risk factors for falls, strategies for prevention, and re-

search issues. Each chapter has good headings which provide useful signposts for the reader and is comprehensively referenced. A conclusion is provided at the end of each chapter, although at times these tend to be a little too broad.

Section 1 (risk factors for falls) covers the general falls epidemiology, postural stability, sensory and neuromuscular risk factors, medical risk factors, medications, environ-
mental risk factors, and finishes with a sum-
mary chapter. The first chapter provides a good overview of falls epidemiology. The issue of “near-falls” and the relationship to falls is not mentioned. This is an area where thoughtful discussion could be very useful to readers, since prevention programs are sometimes directed at slips, trips, and stumbles. The section on the cost of falls provides a conscientious summary of the economic cost of older persons’ falls, but it misses an opportunity to point to the real benefit of costing of falls, that is, the value of a year of life saved.

Section 2 (strategies for prevention) covers the various types of intervention and policy responses. Chapter 2 provides a fascinating insight into the mechanisms of balance main-

tenance. Perhaps the most challenging area to incorporate into fall aetiology is that of environmental risk factors. Here the research base is smaller than that for other types of risk factors. Research in this area has typically been less rigorous or has been trou-
bled by methodological limitations, some of which have been overlooked in this book. The authors correctly list the hierarchy of re-

search design: cohort studies, case-control studies, and cross-sectional surveys. However, in the study of a transient risk factor such as environmental factors, even cohort studies may sometimes be limited as such risk factors can change between baseline and any fall which may occur subsequently. Another methodological limitation which was not raised is that of insufficient statistical power—some of the case-control studies presented may well have lacked power, having fairly small numbers of cases. On balance, though, the evidence presented in this chapter suggests that environmental risk factors play a part in fall aetiology at least among certain subgroups, including those who report environmental factors which interfere with their activities of daily living, among those with a particular disability, and among more vigorous older people. It is curious then, that in the final summary chapter in this section, the evidence for home hazards as a fall risk factor is rated as non-existent when the evidence presented would appear to be more appropriately rated as weak.
Section II (strategies for prevention) covers exercise, environmental modification, footwear, assistive devices, hospitals and residential aged care facilities, medical management, medication modification, targeted strategies, and a physiological profile approach for falls prevention. This section takes a fairly clinical or individual patient approach to falls prevention which may well be the most appropriate for the intended audience. Some discussion of the population based approach would have been a particularly useful contribution, as policy makers embrace the challenge of providing for our increasingly aged population. Nonetheless, this section delivers a high quality summary of evidence based falls prevention strategies. Given the opportunity for falls prevention in general practice and family medicine, the chapters on medical management and medication modification are particularly timely.

The structure of the chapter on exercise options, in my view, does not give a clear overview of the evidence base for this intervention strategy. The chapter begins with an introductory summary of the key trials for and against the protective effect of exercise. This is followed by a section on exercise options, falls, and fall risk factors which systematically presents the results of various studies under four subsections: resistance training, endurance training, individual physiotherapy, and general exercise. Some of the most important studies in this area are not included in these sections, presumably because these were mentioned in the introductory section. These headings are a mix of exercise type (resistance, endurance, general exercise) and method of delivery (individual physiotherapy). There would have been considerable merit in including balance improvement as one of these headings, since two or three of the studies mentioned in different parts of the chapter pointed to a specific benefit of balance improvement on falls prevention. Resistance training was included as a section and yet there is no evidence that this approach reduces falls, although strength is improved. The section on individual physiotherapy reports that research is yet to examine the effect of such on one-on-one training on falls outcome. I would have thought that the study by Campbell et al mentioned in the introduction could be considered one such study. This study reported a protective effect of an intervention that consisted of a selection of exercises prescribed by a physiotherapist for each participant. This chapter would have benefited greatly from a summary table of exercise programs tested in randomised trials. By using separate columns to report the impact of these programs on falls risk factors and falls outcome, the message would have been delivered more clearly.

The greatest strengths of this most welcome book are its analytic and comprehensive nature. Whatever limitations the book may have are more than compensated for by its merits. It brings together the most salient issues for falls prevention for the first time in a specialised text and critically appraises some of the standard clinical tests, ensures that compliance is addressed in prevention programs, and introduced the concept of using physiological profiles to direct the emphasis of individually tailored prevention strategies. This authoritative book should become a well worn and dog-eared part of every falls prevention practitioner’s resource library.

L Day
Senior Research Fellow, Accident Research Centre, Monash University, Melbourne, Australia; Lesley.Day@general.monash.edu.au

Conference focuses on behavior and injury control
A significant decrease in the motor vehicle death rate for Americans—90% fewer deaths per million vehicle miles between 1925 and 1995—shows that efforts to raise safety standards and change personal behavior can be highly successful. Vehicles and roads have been improved designs, while more people wear seat belts and fewer drink and drive. Using what’s been learned from similar efforts to prevent injury at both the individual and community levels was the focus of “Behavioral Approaches to Injury Control”, a January 23 conference sponsored by the Harbourview Injury Prevention and Research Center in Seattle, Washington. Experts on behavior change from around the country presented health behavior change theories, customised injury prevention messages, and strategies for including community values and policy makers in broad approach to injury prevention. The Centers for Disease Control and Prevention, a co-sponsor of the one day conference, actively supports behavioral science approaches to injury control, said David Sleet, PhD, of the CDC’s National Center of Injury Prevention and Control. “As much as we would like to hope otherwise”, Sleet said, “most injuries cannot be resolved by introducing a vaccine-like technology, as the technology must be proven safe, adopted by people and used properly to be effective”. Proceedings from “Behavioral Approaches to Injury Control” will be posted on the HIPRC website (www.hiprc.org) in the near future.

68th RoSPA Road Safety Congress
3–5 March 2003, Blackpool, UK. 68th RoSPA Road Safety Congress Safe driving—Reducing Risks, Crashes and Casualties. The Royal Society for the Prevention of Accident’s congress will focus on recent developments in driver training, older drivers, influencing driver and pre-driver behaviour, law and enforcement, aspects of vehicle design and technology, and designing roads to help rivers. Visit www.rospa.com/road or phone +44 (0)121 248 2000 for further details.

4th Annual CAPIC Injury Prevention Conference
11 March 2003, Cardiff, UK. Details at www.capic.org.uk in due course.

Partnerships for the future
16–18 March 2003, Perth, Western Australia. 1st Asia-Pacific Injury Prevention Conference and the Australian Injury Prevention Network’s 6th National Conference on Injury Prevention and Control deals with issues facing developing countries and those facing indigenous people will have a specific focus but other issues will also be included. The site for registration of interest is www.congresswest.com.au/injury.

12th International Conference on Safe Communities

Injury Researchers’ Meeting
19–21 March 2003, Dunsborough, Western Australia. This meeting, which follows the conference in Perth described above, is organised by the Injury Research Centre (University of Western Australia). It is for experienced researchers who have attended the Perth conference and is aimed at advancing injury research practice by providing a forum for a critical examination of research methods. Conference secretariat: c/o Congress West Pty Ltd, CAN 079 098 829, PO Box 1248, West Perth, WA 6872, Australia, fax +61 8 9322 1734, email convexes@ congresswest.co.au.

4th European Convention in Safety Promotion and Injury Control
10–11 April 2003, Paris. At this meeting, ECOSA wants to reassess the situation in Europe and to share the experiences in safety promotion and injury control measures among all partners involved. It wants to identify the successes and failures in implementing the recommendations of ECOSA’s White Book since 2001. It will in particular also look into the consequences of implementing the new provisions under the new general product safety directive, the directions for enhancing safety of services, and the impact of product liability on business. The 4th European Convention will provide the platform for communication and exchange among all stakeholders involved in the consumer safety issue and will offer new insights and innovative approaches towards safety promotion in Europe. Further information: www.ecosa.org/ecs/news.

Child and Youth Health 2003
11–14 May 2003, Vancouver, British Columbia. The Congress will focus attention on health issues facing children and youth within the context of the UN Special Session on Children, which immediately precedes it. It provides the international community with the setting to define opportunities and set priorities related to new knowledge development through research and the application of this knowledge to the health issues of children over the next decade. The congress will bring together child and youth health leaders, scientists, health workers, governmental and non-governmental organizations, and industry to identify those opportunities that are critical to moving forward on
improving the health of all children. Youth participation will be encouraged. This congress links to and is a direct response to the challenge put forward by the United Nations to address the needs of children as a priority. The call for abstracts is open until 31 October 2002. Further information: www.venuewest.com/childhealth2003 or write to Child & Youth Health 2003, c/o Congress Secretariat, Venue West Conference Services Ltd, 645–375 Water Street, Vancouver, BC, Canada V6B 5C6, tel +1 604 681 5226, fax +1 604 681 2503, email congress@venuewest.com.

Enhanced Safety of Vehicles Conference
19–23 May 2003, Nagoya, Japan. The theme of the 2003 ESV conference is “New steps towards vehicle safety enhancements”. There are 13 themes ranging from child restraint systems through vehicle design to advanced intelligent technologies. Further information about the conference can be found at www.esv2003.com.

2nd International Safe Community Conference on Cost Calculation and Cost-effectiveness in Injury Prevention and Safety Promotion
10–13 June 2003, Falun, Dalarna, Sweden. The conference will consider the costs—direct, indirect, and intangible—which injuries and accidents cause society, authorities, and individuals and present models to estimate these costs. Cost calculation methods will be discussed in a political, ethical, cultural, and socioeconomic context. Visit www.falun.se/safe2003 for further information.

XXII Congress of the International Association for Suicide Prevention

7th World Conference on Injury Prevention and Safety Promotion
6–9 June 2004, Vienna. The major objectives of the conference are strengthening violence and injury prevention as an aspect of national public health policy and programs; producing synergy of the combined efforts of various violence and injury prevention disciplines; exchanging the most recent experiences in research and practice; and facilitating participation of experts from low income countries. Further information: www.safety2004.info.

If you wish to comment on any article published in Injury Prevention you can send an eLetter using the eLetters link at the beginning of each article. Your response will be posted on Injury Prevention online within a few days of receipt (subject to editorial screening).

www.injuryprevention.com