Citywide trauma experience in Kampala, Uganda: a call for intervention

O C Kobusingye, D Guwatudde, G Owor, R R Lett

Objectives: To describe injuries and their emergency care at five city hospitals.

Setting: Data were collected between January and December 1998 from casualty departments of the five largest hospitals of Kampala city, Uganda, with bed capacity ranging from 60 to 1200.

Methods: Registry forms were completed on trauma patients. All patients with injuries were eligible. Outcome at two weeks was determined for admitted patients.

Results: Of the 4359 injury patients, 73% were males. Their mean age was 24.2 years, range 0.1–89, and a 5–95 centile of 5–50 years. Patients with injuries were 7% of all patients seen. Traffic crashes caused 50% of injuries, and were the leading cause for patients ≥10 years. Fifty eight per cent of injuries occurred on the road, 29% at home, and 4% in a public building. Falls, assaults, and burns were the main causes in homes. Fourteen per cent of injuries were intentional. Injuries were severe in 24% as determined with the Kampala trauma score. One third of patients were admitted; two thirds arrived at the hospital within 30 minutes of injury, and 92% were attended within 20 minutes of arrival.

Conclusions: Injuries in Kampala are an important public health problem, predominantly in young adult males, mostly due to traffic. The majority of injuries are unintentional. Hospital response is rapid, but the majority of injuries are minor. Without pre-hospital care, it is likely that patients with serious injuries die before they access care. Preventive measures and a pre-hospital emergency service are urgently needed.

METHODS

A one page registry form, described elsewhere, was completed in the casualty department for each patient by nurses, clinical officers, or doctors trained in hospital injury surveillance. Demographics, causes of injury, severity, and outcome were recorded. The patient status and outcome at two weeks were recorded by records clerks. At each hospital a surgeon, or senior doctor, checked the registry for accuracy and completeness.

Classifications of external causes of injuries were derived from the ICD-10, with the exception of “blunt injuries” and “cuts/stabs”, which for simplicity were based on mechanism. Data from the registries were managed and quality controlled at the Injury Control Center–Uganda. Injury severity was determined using the Kampala trauma score (KTS) whose validity and reliability for use in both adults and children was described elsewhere. This scoring system, which has been shown to perform as well as the injury severity score and revised trauma score, includes all the elements of the trauma score and injury severity score (TRISS), but is simplified so that it can be determined in outpatient settings of hospitals with limited resources. Severe injury consisted of a KTS <11, moderate injury 11–13, and mild injury 14–16.

RESULTS

A total of 4515 patients were registered between January and December 1998; 156 were excluded from analysis because of incomplete data on the injury or outcome. Results are based on the remaining 4359 patients. The distribution of injury patients by hospital was Mulago, 75%, Nsambya, 12%, Mengo, 5%, Rubaga, 4%, and Kibuli 3%. Overall, the 4359 injury
patients were 7% of all the patients seen in these hospitals. Of the 4359 patients, 2836 (65%) were treated and sent home, 1448 (33%) were admitted, 28 (0.6%) died within two weeks.

Patient characteristics

Males comprised 73% of injury patients. The age distribution is described in table 1. Twenty per cent of injury patients were not Kampala residents, while 21% were injured outside the district. The demographics of the patients were not different between hospitals.

Cause of injury

Road traffic was the most important cause, causing 50% of all injuries, followed by cuts/stabs (16%), and falls (13%). The causes for the various age groups are in table 1. Pedestrians comprised 38% of traffic injuries, drivers 5%, other motor vehicle occupants 3%, and cyclists 22%.

Intent

The majority (86%) of the injuries were unintentional, 13% were intentional, and 1% undetermined. Most gunshot wounds (89%) were intentional. Many blunt injuries (43%) and cuts/stabs (32%) were intentional. The proportion of intentional injury among other causes was minimal. Of the 567 intentional injuries, 314 (55%) occurred at home. Females were more likely to have sustained an intentional injury at home (62%), than males (39%), p<0.001. However, the causes of domestic intentional injuries were similar in females and males.

Occupation

Students and pupils accounted for the biggest proportion (29%) followed by civil servants (16%), casual laborers (13%), and small business owners (11%). In all occupations, traffic was the commonest cause: students/pupils, 42% of the injuries, civil servants 58%, and casual laborers, 48%; followed by falls (23%), and cuts/stabs (15%).

Place of injury

The majority of injuries happened on roads/streets (58%), and homes (29%). Other places were public buildings (4%) and factories (3%). More women were injured at home (41%) compared to males (25%), p<0.001.

Care and outcome

The majority of patients arrived in hospital within an hour (66%). There was no significant difference in arrival time between hospitals. Neither was there a difference in the median arrival time in patients who died (45 minutes), and patients with other outcomes (60 minutes), p=0.462. Of the 114 patients who arrived after 24 hours, 8% had been injured in Kampala. The median hospital response time was five minutes at all the five hospitals. The majority of patients (84%) were attended to within 10 minutes (see table 2). The response time for patients who died was 10 minutes, compared with five minutes in all other categories (p=0.306).

At two weeks, 943 (65%) of the 1448 admissions had been discharged, 81 (6%) had died, 107 (8%) were still in hospital, and 317 (22%) left hospital “against medical advice”.

Severity and outcome

The majority of the patients (97%) had minor injuries, 2% had moderate injuries, and only 1% had severe injuries (see table 3). There were no significant differences in the distribution of severity of injuries between the hospitals. However, Kibuli registered a relatively higher proportion of moderately and severely injured patients, 11% and 5% respectively, compared with the other four hospitals. The head, neck, and/or face were the most commonly injured parts of the body; 44%, followed by the bony pelvis and/or extremities (39%) (see table 4). In 8% of the patients, a head, neck, or face injury was associated with another injury. The highest number of deaths occurred with KTS <14. These deaths were mainly from traffic (54%), falls (11%), stabs and cuts (11%), and burns (8%). Mulago had

Table 1 Top four causes of injury in each age group

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>No (% total sample)</th>
<th>No (% top four causes)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>711 (16)</td>
<td>Falls 210 (30) Traffic 204 (29) Burns 111 (16) Cuts/stabs 87 (12)</td>
</tr>
<tr>
<td>11–20</td>
<td>1020 (23)</td>
<td>Traffic 494 (48) Cuts/stabs 178 (18) Falls 145 (14) Blunt injuries 73 (7)</td>
</tr>
<tr>
<td>21–30</td>
<td>1577 (36)</td>
<td>Traffic 904 (57) Cuts/stabs 276 (18) Blunt injuries 121 (8) Falls 100 (6)</td>
</tr>
<tr>
<td>31–40</td>
<td>661 (15)</td>
<td>Traffic 384 (58) Cuts/stabs 93 (14) Falls 55 (8) Blunt injuries 45 (7)</td>
</tr>
<tr>
<td>Total</td>
<td>4359 (100)</td>
<td>Traffic 2194 (50) Cuts/stabs 678 (16) Falls 572 (13) Blunt injuries 298 (7)</td>
</tr>
</tbody>
</table>

Table 2 Mean (%) time between arrival to hospital and receiving attention

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–10</td>
</tr>
<tr>
<td>Mulago</td>
<td>506 (88)</td>
</tr>
<tr>
<td>Nsambya</td>
<td>412 (84)</td>
</tr>
<tr>
<td>Rubaga</td>
<td>139 (81)</td>
</tr>
<tr>
<td>Mengo</td>
<td>193 (86)</td>
</tr>
<tr>
<td>Kibuli</td>
<td>108 (74)</td>
</tr>
<tr>
<td>Total</td>
<td>1358 (84)</td>
</tr>
</tbody>
</table>

Table 3 Injury severity as measured by the Kampala trauma score, by hospital; results are number (%)

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Severe</th>
<th>Moderate</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulago (n=2531)</td>
<td>29 (1)</td>
<td>44 (2)</td>
<td>2458 (97)</td>
</tr>
<tr>
<td>Nsambya (n=537)</td>
<td>4 (1)</td>
<td>13 (2)</td>
<td>520 (97)</td>
</tr>
<tr>
<td>Rubaga (n=175)</td>
<td>0</td>
<td>0</td>
<td>175 (100)</td>
</tr>
<tr>
<td>Mengo (n=221)</td>
<td>0</td>
<td>8 (4)</td>
<td>213 (96)</td>
</tr>
<tr>
<td>Kibuli (n=132)</td>
<td>7 (5)</td>
<td>15 (11)</td>
<td>110 (83)</td>
</tr>
<tr>
<td>Total (n=3596)</td>
<td>40 (1)</td>
<td>80 (2)</td>
<td>3476 (97)</td>
</tr>
</tbody>
</table>
In quality control assessments, we have demonstrated that the trauma registry captures an average of 60% of injured patients who come to hospital, and that there is no difference between patients included or missed by the trauma registry. We therefore do not believe that incomplete registry catchment is a source of bias. Inclusion of all the major hospitals in Kampala reduces selection bias due to the lack of definition of catchment areas of single hospital registries. The lack of statistical difference on demographics, outcome severity, and etiology strengthens the assertion that the data collected are representative of trauma victims who receive hospital care in Kampala.

One of the limitations of this hospital based study is that we do not know about patients who were injured and did not reach hospital. Our concern that many are dying without care is based on our 1997 community based study in Kampala which indicated an injury mortality of 2.2/1000 per year. With a population of more than one million people and the high prevalence of injury mortality noted in the community studies it is clear many patients, even those with severe injuries, are not accessing formal care. Mock et al found that in Ghana, 30% of patients with a severe injury both in and out of the city did not access formal care, but 60% of those with non-fatal severe injuries in the city received hospital care.

Results show that minor injuries are crowding secondary and tertiary care services, with no triage to match injury severity to level of care. At least one severe injury must be present for patient admission. However some hospitals modify admission criteria for social or logistic reasons so in some cases overstate severity to facilitate admission. The provision of centers for minor injuries should be a priority for the city. It is unfortunate that the curative services at Kampala hospitals represent nearly all of the investment for injury control yet these resources are directed at minor and moderate injuries.

There is no pre-hospital emergency care system and discussion of these results is within that context. It is of concern that of the severely injured, 36% arrived more than one hour after injury. Most of these patients were from within the city, yet had no pre-hospital care; this has implications for patient outcome.

A pre-hospital emergency service would help improve the transit to hospital. This may result in increased hospital injury mortality initially, as more severe injuries would make it to hospital.

These results confirm that injury is an important problem to the clinical service, but we believe is a gross underestimate of the magnitude of the problem. Our findings are very similar to those from urban trauma centers in Iran, where it was concluded that trauma surgery training and direct transportation to trauma centers could improve outcome.

IMPLICATIONS FOR PREVENTION

Preventive measures, especially for traffic injuries, are urgently needed and should have resources that reflect the magnitude

Table 4 Body area injured (admitted patients) by hospital; results are number (%)

<table>
<thead>
<tr>
<th>Body area injured</th>
<th>Mulago (n=1001)</th>
<th>Nsambya (n=153)</th>
<th>Mengo (n=123)</th>
<th>Rubaga (n=58)</th>
<th>Kibuli (n=70)</th>
<th>Total (n=1405)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head/neck/face</td>
<td>445 (44)</td>
<td>62 (41)</td>
<td>58 (47)</td>
<td>30 (52)</td>
<td>30 (43)</td>
<td>625 (44)</td>
</tr>
<tr>
<td>Chest</td>
<td>64 (6)</td>
<td>24 (16)</td>
<td>14 (11)</td>
<td>9 (16)</td>
<td>4 (6)</td>
<td>115 (8)</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>40 (4)</td>
<td>7 (5)</td>
<td>6 (5)</td>
<td>4 (7)</td>
<td>8 (11)</td>
<td>65 (5)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>71 (7)</td>
<td>13 (8)</td>
<td>13 (11)</td>
<td>5 (9)</td>
<td>7 (10)</td>
<td>109 (8)</td>
</tr>
<tr>
<td>Bony pelvis and extremities</td>
<td>423 (42)</td>
<td>49 (32)</td>
<td>44 (36)</td>
<td>12 (21)</td>
<td>24 (34)</td>
<td>552 (39)</td>
</tr>
<tr>
<td>Head/neck/face + any other body part</td>
<td>69 (7)</td>
<td>16 (10)</td>
<td>17 (14)</td>
<td>8 (14)</td>
<td>4 (6)</td>
<td>114 (8)</td>
</tr>
</tbody>
</table>

...
of the problem. A pre-hospital emergency service should be implemented, as this study suggests that salvageable patients are dying before reaching hospital. Injury management requires coordination, so that the large volume of minor injuries receive care without impeding the care of the seriously injured, who should be rapidly triaged to tertiary centers. This is particularly crucial for head injuries.

ACKNOWLEDGEMENTS
We acknowledge funding from International Clinical Epidemiology Network, the Canadian Network for International Surgery (CNIS), the Canadian International Development Agency (CIDA), and the input of Dr O C Kobusingye, Dr I Shaban (Kibuli Hospital), and Dr Ebyarimpa (Mengo Hospital). We acknowledge funding from International Clinical Epidemiology Network, the Canadian Network for International Surgery (CNIS), the Canadian International Development Agency (CIDA), and the input of

References
13. Von der Spuy J. Trauma in those first five years: trauma review, the National Trauma Research Programme (NTRP) of the South African Medical Research Council. Cape Town: MRC, 1996;4(1).

LACUNAE

South Australian attempt to protect “Good Samaritans”

In an increasing litigious society and to encourage people to give assistance where it is needed the South Australian Minister for Volunteers introduced a Bill into parliament in late 2001 to limit the liability of people for injury arising out of genuine attempts to help victims in emergency situations. Called the “Good Samaritans (Limitation of Liability),” it defined a “Good Samaritan” as a person, acting without any expectation of payment or consideration who comes to the aid of a victim in an emergency or who gives advice about the treatment of a someone apparently in need of emergency treatment. Under the Bill the Good Samaritan is not liable for personal injury to the victim arising out of a genuine attempt to help the victim unless gross negligence is established. Media reports indicate that there have not been any cases of an injured person suing their rescuer and regard the Bill as publicising the lack of risk to potential helpers rather than preventing litigation. While there is no similar legislation in other states, NSW has legal protection for medical professionals who attend an emergency and render assistance on a voluntary basis (there are limitations to this exemption in fairly extreme circumstances).

Label instructions on consumer products . . .

- On a Scar’s hairdryer: do not use while sleeping.
- On packaging for a Rowenta iron: do not iron clothes on body.
- On Boot’s children’s cough medicine: do not drive a car or operate machinery after taking this medication.
- On most brands of Christmas lights: for indoor or outdoor use only.
- On a Japanese food processor: not to be used for the other use.
- On a child’s superman costume: wearing of this garment does not enable you to fly.
- On a Swedish chainsaw: do not attempt to stop chain with your hands or genitals.

(Contributed by Barry Pless, who cannot confirm the veracity of these instructions!)