Cross country variation of fractures in the childhood population. Is the origin biological or “accidental”?

Editor,—The interesting paper by Lyons et al revealed that the annual incidence rate of fractures among children aged 0–12 years was two to three times higher in Wales than in other western European countries.1 This discrepancy prompted us to briefly report on the epidemiological profile of fractures in the childhood population of Greece and discuss the implications of the observed differences.

Our data derive from the Emergency Department Injury Surveillance System (EDISS) database which is run by the Center for Research and Prevention of Injuries among the Young (CEREPRI).1 All types of childhood injuries treated at the emergency departments of the participating hospitals, which have well circumscribed catchment areas in rural and urban Greece, are routinely recorded in this database. The catchment area includes the Greater Athens area, where about 40% of the country’s population resides, Magnesia county in Greece mainland, and Corfu county on the island of Corfu. Our methodology was similar to that followed by Lyons et al thus allowing for reasonable comparisons.

A total of 8557 fractures were recorded during the 3-year period 1996–98 among children 0–14 years old and the estimated annual incidence rate was 12 fractures/1000 children. No significant variation was noted among children from the different sites participating in EDIS. This rate is just one third of that recorded in the Welsh childhood population. In line with what is reported by Lyons et al, and other investigators,2–4 boys were also over represented in the Greek data so that the male to female ratio: 1.9 and this preponderance increased with age. Altogether 2.7% of the injured children presented with multiple fractures, a figure that is higher than that reported by Lyons et al (1.8%) and may reflect the higher road traffic injury toll in Greece. In fact, one third of the multiple fracture injuries were the result of a road traffic crash, whereas traffic accidents accounted for less than 5% among injured children with one fracture.

The distribution of children by injured body part was comparable to that of the Welsh population, with fractures of radius and ulna accounting for 43% of the total, followed by fractures of fingers (3.9%), humerus (6.9%), and carpal/metacarpals (4.8%). The similarity in the pattern of fractures among children who sought emergency hospital care in the two countries can be considered an indicator of the high quality registration system in both sites and enhances the possibility that the observed difference of the fracture incidence rate is genuine. It is worth noting, however, that despite the low overall incidence of fractures in the Greek childhood population, the proportion of skull fractures was more than twice as high as that reported in the Welsh1 and in a related Swedish study.5 Cycle helmet use may not be optimal in Greece, but according to data derived from EDIS, use of protective devices for road traffic injuries is unacceptably low, and playgrounds do not usually comply with international standards. Therefore, the underlying causes for the discrepancy in skull fracture incidence should be carefully monitored in Greece, whether it is caused by reluctance to wear helmets or otherwise, and corrective action taken.

One third of the recorded fracture injuries in both studies occurred in residential areas, where children spend most of their time, followed by school areas and public premises. An average of 40% of fractures resulted from sports and leisure activities. Cultural differences and different sports and leisure time preferences between the two population groups, however, become obvious when the injuries are further analyzed by type of sport activity. Thus, ball related injuries were dominant in our population (70% of sports related injuries among Greek compared with 40% among Welsh children), whereas wheeled sports activities were almost twice as common in Welsh compared with Greek children (35% and 20% respectively).

In conclusion, the comparison of data from these studies indicate that the incidence of fractures in the Greek childhood population is similar to that observed in Sweden but much lower than that reported by Lyons and his colleagues.1 This question is: could this variation simply be attributed to different exposure levels and/or different prevention strategies that are followed in the respective countries, or does it reflect the expression of a biological mechanism, possibly related to nutritional factors,7 that accounts for fewer Greek children suffering from fractures. The latter hypothesis cannot be properly addressed without careful consideration of differences in data collection, coding, and processing methods. To test this hypothesis, comparative, population based crude and fracture specific injury incidence data from southern and northern European countries could be used to elucidate whether the observed differences simply reflect a corresponding difference in exposure to high risk incidence or whether they are mainly related to differences in the incidence of fractures. If the latter is the case, further investigation focusing on possible differences in bone mass density or dietary intake should be considered in the interpretation of the observed variation of fractures on different population groups.

M MOUSTAKI
M LARIOU
Department of Hygiene and Epidemiology, Athens University Medical School, Greece

E PETRIDOU
Department of Hygiene and Epidemiology, Athens University Medical School, 75 Mitropoleos, Athens, 115 27, Greece

Department of Epidemiology, Harvard School of Public Health, Boston, USA

Correspondence to: Dr Petridou in Athens epetrid@cc.uoa.gr

7 Petridou E, Karpathios T, Dessypris N, et al. Schooling areas and high accident rates in more disadvantaged parts of the city. This has resulted in a reduction in speeds and a 39% reduction in reported accidents in areas calmed under the “casualty reduction” programme. While it remains to be seen whether the much less expensive advisory 20 mph schemes will be of similar benefit, there are suggestions about implementing and enforcing these schemes. As these 20 mph schemes are merely advisory, they can only be enforced if motorists are driving dangerously. Anecdotal evidence from early 20 mph schemes suggest that, while speeds are in general reducing, a significant proportion of motorists have not moderated their speed. These motorists are often local residents who believe they “know the road” (Lothian and Borders Police, personal communication). This emphasises the importance of community consultation before schemes are introduced and regular feedback to the community after they are in place—‘in Scotland only around a third of...
residents have rated the consultation as sufficient. Where there is good consultation there may be an underlying cohort for each type from which cases and controls are sampled. The primary difference between the incidence density and cumulative incidence control case-control studies is how we view the cohort and what information the control group provides. The incidence density case-control study views the underlying cohort as being stable and dynamic. The control group in an incidence density case-control study is intended to provide an estimate of the fraction of the population time exposed and unexposed. The OR, then, is a ratio of pseudo-rates and provides an unbiased estimate of the incidence rate ratio, with no rare disease assumption (table 1). Thus it does not matter whether the disease is rare, only that controls be selected independently of exposure status to be representative of the distribution of the exposure in the source population which produced the cases.

The cumulative incidence case-control study is where the rare disease assumption is important. The cohort underlying the cumulative incidence case-control study should be thought of as closed and fixed. Incident cases are sampled throughout a defined time period and controls are residual non-cases (that is, those individuals at risk who did not become cases over this period). In this situation, the control group does not provide a representation of person-time. Instead, the relationship between the odds and the risk is what is key. That is, when the disease is rare, the odds of disease (cases/non-cases) and the risk of disease (cases/totals) are approximately equal (keeping in mind that the odds of disease is not available from a case-control study, only the OR).

risk = 10 cases/100 total at risk / 10 cases/(100 total cases - 10 cases) = 10 cases/990 non-cases = odds

The case-control studies that provide the OR estimates used in Dr Kopjar’s article could be seen as the incidence density type. The OR would then provide an unbiased estimate of the incidence rate ratio, with no rare disease assumption.

B HAGEL
J-F BOIVIN
Joint Departments of Epidemiology and Biostatistics and of Occupational Health, McGill University, 1202 Pine Avenue West, Montreal, PQ H3A 1B2, Canada bhagel@koe.mcgill.ca

TABLE 1 Hypothetical example of how the odds ratio is an unbiased estimate of the incidence rate ratio in an incidence density case-control study. The sampling fraction for cases is 10% and the control group provides the fraction of person-time exposed and unexposed. This example is based on data from Thompson et al

<table>
<thead>
<tr>
<th>Hypothetical cohort</th>
<th>Helmet</th>
<th>No helmet</th>
<th>Total</th>
<th>Incidence rate ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>220</td>
<td>535</td>
<td>757</td>
<td>0.316</td>
</tr>
<tr>
<td>Bicycle riding hours</td>
<td>149</td>
<td>1 134</td>
<td>263</td>
<td>0.316</td>
</tr>
<tr>
<td>Incidence density sampling from the population experience:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>222</td>
<td>535</td>
<td>757</td>
<td>0.316</td>
</tr>
<tr>
<td>Controls</td>
<td>1 134</td>
<td>2 634</td>
<td>4 968</td>
<td>0.316</td>
</tr>
</tbody>
</table>

The initial chapter “injury and the disclosure of the truth” is particularly compelling as it guides us into the minds of those who engage in qualitative research; those seeking “the insider perspective on injury” (p xviii). For qualitative researchers there is “no ultimate truth” (p xix) but a series of constructed relationships grounded in cultural and social phenomena. Impressively, it addresses the issue of analyzing and writing up the research—an area often ignored in methodological texts. We are given the opportunity to look over a raw transcript and to see how it is managed through a series of coding categories. This is invaluable to first timers unsure of how to deal with huge bodies of interview transcripts and how to present these data after analysis.

Where the book could be stronger is in the decision to cover many methods briefly, as opposed to a few methods in greater detail. This trade off can be forgiven as it is an introductory book and contains suggestions for further reading about each method.

The inclusion of certain methods, or what Rothe calls “data collection plans”, seems rather idiosyncratic—new to me were such things as “walk and talk” and the use of public meetings. This section could be better ordered to promote the actual methods rather than differences in the field location and groupings of participants. It would contest his belief that content analysis can be qualitative as I cannot see how counting can be anything other than quantitative—regardless of what you are counting.

The insights into fieldwork experience are invaluable (chapter 7). Often methods books offer a systematic overview without furnishing us with insights into the actual hands-on process of conducting research. Similarly the chapter on ethics, brief as it is, is an important inclusion as it is a key consideration of any research project—but particularly so with the degree of personal contact with respondents one often gets when conducting qualitative research.

Minor quibbles with the book are that it has no index; an omission diminished by the excellent glossary and appendices. Fortunately, the bibliography is a selection of books rather than all of those referred to in the text. As a newcomer to the field, I was surprised at the dearth of qualitative research conveyed in papers at the 5th World Conference on Injury Prevention and Control (Delhi, 2000). This book hopefully marks a new era in qualitative research.
field, one that Jerry Moller has long called for, which will incorporate the "beliefs and behaviours of individuals and the social and cultural structure" (Moller quoted in Rothe, pivvi, and originally, Moller) into accident prevention. Without it our understanding is that of the task at hand; we fail to appreciate the intricate interplay of causes of unintentional accidents and injuries and in so doing, fail to make real headway to creating effective prevention strategies.

S GRUNDY
Department of Child Health,
University of Newcastle-upon-Tyne, UK

From the Chair of ISCAIP

As many readers will be aware, the elections for the new ISCAIP Board were held in 2000. I feel deeply honoured to have been elected Chair and wish to thank all concerned for their support. My colleagues on the Board are an outstanding team of highly respected injury prevention professionals and I am confident that we, together with the membership, can take ISCAIP into the new century with a renewed sense of purpose and urgency. I want especially to record my appreciation of the incalculable contribution of Fred Rivara, founding Chair of ISCAIP, in laying the foundation stones of ISCAIP, which will incorporate the "beliefs and behaviours of individuals and the social and cultural structure" (Moller quoted in Rothe, pivvi, and originally, Moller) into accident prevention. Without it our understanding is that of the task at hand; we fail to appreciate the intricate interplay of causes of unintentional accidents and injuries and in so doing, fail to make real headway to creating effective prevention strategies.

UPDATE ON ISCAIP


1st International Course on the Global Burden of Injury
30 October–3 November 2001, Stockholm. The aim of the course is to provide a general scientific platform for the understanding of global trends and international differences in injury mortality and morbidity; for PhD and postgraduate students and senior researchers. Further information: Moe Sundstrom, Karolinska Institutet, Department of Public Health Sciences, Division of Social Medicine, Norrbacks SE-171 76 Stockholm, Sweden (tel: +46 8 517 77948, fax: +46 8 334 693, email: moa.sundstrom@socmed.sll.se).

6th World Conference on Injury Prevention and Control

CALENDAR

10th Annual Conference on International Safe Communities
21–23 May 2001, Anchorage, Alaska, USA. The theme is Safe Work, Safe Play Around the Clock. Further information and online registration: www.alaska-ipc.org or from Conference Manager, Diana Hudson, The Alaska Injury Prevention Center, PO Box 210736, Anchorage, Alaska, USA 99521-0736 (tel: +1 907 929 3989, fax: +1 907 929 3940, email: diana_hudson@hotmail.com).

International Child Passenger Safety Technical Conference
2–6 June 2001, Indianapolis, Indiana, USA. This conference will offer workshops on child passenger safety certification, boosters and belts for school age kids, legislation and advocacy, model law enforcement programs, restraint programs for children with special needs, transportation in other vehicles, and more. Additional training information: www.cipsafe.org.