EMPOWERING THE NEXT GENERATION OF SAFETY AMBASSADORS – NATIONAL SAFETY SCIENCE CAMPAIGN

Naina Ura*, Lakshmi Nair*. Underwriters Laboratories, Bengaluru, India
10.1136/injuryprev-2021-safety.216

Context Aligned to SDG 4.7, the National Safety Science Campaign(NSSC) by Underwriters Laboratories in India aims to create a culture of safety in young minds and empower India’s next generation of safety ambassadors.

Core initiatives
a. National Safety Science Quiz for grades 8 to 10 is aimed at imparting safety science knowledge
b. Poster Contest for grades 4 to 7 gives a platform to creatively unleash their thoughts on safety
c. Safety Impact films for ages 16 to 25 brings highlights the brilliant safety innovations being built by young students
d. Safer Schools Safer India is for primary level to help them learn about fire safety by following the story of our in-house comic character ‘Bittoo’.
e. Safety clubs for middle schools is based on experiential learning for students to understand the science behind safety.

Outcomes Reached close to 57 million people across the country through this campaign.

Over 77,000 children from 2000 schools registered for the competitions in 2019. Safety Impact Films, piloted in 2019, garnered over 200 entries of which the top 5 innovations were chosen. Safety club program, piloted in 2019, saw a participation of 20 schools including 135 teachers and over 2000 students. With the Safer Schools Safer India program we trained 467 teachers and through them reached out to 26,879 students.

Learnings
- Need to influence the key stakeholders for safer school ecosystem, build awareness and promote the concept among children
- A combination of art and science to integrate safety into the curriculum.

A NOVEL ADOLESCENT ROAD TRAFFIC INJURY PREVENTION ENGAGEMENT PROJECT

1Jessica Landry*, 2Nimsy Carolina Ramos Velásquez, 3Maria Isabel Bolaños Reyna, 1Cinnamon Dixon. 1University of Colorado/Children’s Hospital Colorado, Aurora, USA; 2Trifinio Center for Human Development, Guatemala

Background Injury accounts for 30% of adolescent deaths in Guatemala; more than one-third are due to road traffic injuries (RTI). Little has been documented about adolescents who are most affected by RTI. This Photovoice project aimed to engage a cohort of rural Guatemalan adolescents to assess and voice perceived RTI risk factors and community strengths.

Methods The project enrolled 10 adolescents participating in a local Youth Leadership program. In-classroom group discussions were held with participants to identify RTI perceived risk and protective factors; adolescents then conducted Photovoice (photo-exploration) of their community’s injury risks/strengths.

Results RTI Risks: Five risk factors were identified during in-class discussion: desire for adrenaline, high speed travel, lack of traffic lights, distracted driving, and animals in streets. Adolescent photo-documentation identified an additional eleven risk factors: lack of separation between pedestrians and traffic, motorcycle-taxis, lack of curbs, steep drop-offs from the streets, narrow bridges, multiple passengers on motorcycles and in truck beds, young drivers, young children on motorcycles, broken glass and lack of helmets.

Community Strengths: Two community strengths were identified during classroom discussion: fences around homes and speed bumps. Photo-documentation resulted in identification of an additional six community strengths: guardrails, helmets, protective clothing, speedbumps in front of schools, school fences and security guards.

Conclusion RTI is a significant cause of adolescent mortality worldwide. Interactive injury prevention activities including Photovoice are important tools for motivating and involving this at-risk population to improve their understanding of injury risk and protective factors, which could result in increased safe behaviors.
EXPERIENCE USING REDCAP IN INJURY PREVENTION RESEARCH, NEPAL

Sumilsha Bhatta, Prerita Joshi, Elisha Joshi, Sunil Kumar Joshi*. Nepal Injury Research Centre (NIRC), Kathmandu Medical College Public Ltd., Kathmandu, Nepal

10.1136/injuryprev-2021-safety.219

Context Nepal Injury Research Centre (NIRC) is dedicated to injury-related studies in Nepal. One of the key objectives of NIRC is to conduct standardized research additional to building the capacity of local researchers in adopting a robust Electronic Data Capture (EDC) system.

Process A NIRC data manager was appointed and trained by a REDCap expert from the University of Bristol, UK who then supported implementation of the system. Local data collectors were trained to use the REDCap mobile application allowing them to collect data offline and synchronize the collected data to the server when a good internet connection was available. We surveyed 24 data collectors involved in NIRC studies to gather their feedback.

Analysis Data collectors were largely positive regarding REDCap as a tool in comparison with other methods and reported the interface to be user-friendly. Data collected could be monitored remotely which helped in maintaining data quality and preparing data for analysis. It allowed sharing of data collection tools within different projects, reducing duplication of effort. However, the main reported challenge was adapting to the periodic updates in the REDCap system.

Outcomes REDCap was used successfully to capture data electronically across five studies. The few issues encountered were mitigated using available system functionalities. An in-country server was established, with potential for NIRC to offer EDC services to other researchers in Nepal.

Learning Outcomes Using collaborative approach to reflect on opportunities and challenges of using EDC is crucial to strengthen and expand local ownership of research tools and data.

E-Posters P5 – Road, March 26, 2021

INJURY PATTERNS OF WHEELED RECREATIONAL VEHICLES IN THE TRAFFIC ENVIRONMENT

Rod IE*, Oscar Oviedo-Trespalacios, Mark King, CARRS-Q, QUT, Brisbane, Australia

10.1136/injuryprev-2021-safety.221

Background Wheeled recreational vehicles (WRV) are becoming a popular transportation choice among younger commuters. While users of WRV such as skateboards, scooters, and roller-blades are legally regarded as pedestrians in some jurisdictions, injuries occurring due to the use of these devices are not often classified as pedestrian injuries unless a motor vehicle is involved.

Methods We seek to describe non-vehicle WRV accidental injury when used in public roads and footpaths. We retrospectively reviewed data from the Queensland Injury Surveillance Unit (QISU) for calendar years 2008–2017.

Results There was a total of 1922 non-intentional WRV single events occurring in the traffic environment treated in emergency departments. The mean age of the injured was 13 (SD = 7) with 99% of the events been a fall. Males (73%) were most commonly injured and the trauma most frequently occurred on weekdays (60%) compare to weekends (40%). Upper extremity (54%) and the head (16%) was the most common injured body part while fractures (40%) and sprain-strains (21%) were the most common type of injury. Brain Injury was found to be an important risk factor for hospital admissions.