Abstracts

Results Activity Room: Children took similar risks when supervised (.34±.27) and unsupervised (.30±.24), t(59)=-1.10. Bivariate correlations revealed greater risk-taking with more protective/supervision-oriented parents. Multiple linear regression predicting supervised play from PSAPQ scales was significant, F(3,53)=4.90, p<.05, R²=.22; only protectiveness significantly predicted, p<.05.

Illustrations Children took fewer risks when supervised (2.29±1.55) than unsupervised (1.80±1.71), t(59)=2.81, p<.05. Bivariate correlations revealed greater risk-taking for supervision-oriented parents. Multiple linear regression predicting supervised risk-taking from PSAPQ scales was non-significant, F(3,54)=2.56, p=.07, R²=.13, although supervision significantly predicted, p<.05.

Conclusion These findings support crucialness of active parental supervision for child injury prevention, and safe risk-involved exploration for child development. Inattentive supervision may increase risk.

Learning Outcomes Parental supervision quality and type impacts children’s risk-taking.

P4.005 SUPPORT SYSTEM FOR CHILDREN MOBILITY MANAGEMENT TO IMPROVE SCHOOL TRANSPORT SAFETY

Dagmara Jankowska-Karpa*. Motor Transport Institute, Warsaw, Poland

Context Road accidents are main cause of unnatural road deaths among children and youth. Children are vulnerable when they travel unaccompanied to school: walking/cycling, using public transport or dedicated school transport. School transport system requires modernization and more focus on children safety at all stages of the trip.

Process Based on own research regarding effectiveness of Intelligent Transport Systems for school travel, a model of support system for children mobility management was developed to ensure children’s safety in a door-to-door perspective. Aim of the system is to i.e. inform parents and school on child location, assist stakeholders supervising school transport to plan optimal routes of buses. The model of the system is composed of five modules: location of children’s tags, location of intelligent bus stops, location of children on the bus, location of children at school, optimisation of bus route, safe travelling.

Analysis Different variables were analysed and practical verification of the model was done based on data from one of the regions in Poland. Model of the system refers to all stages of school travel and includes technologies supporting children on way to school.

Outcomes Preliminary validation of the system’s model was positive; journey supported by the system was safer than without system. Further analyses should be carried out on a wider scale and model should be expanded with other elements.

Learning Outcomes It is crucial to investigate possibilities of children safety improvements with relation to the use of modern technology measures, which should encompass other road users too.