and agriculture were enrolled in the survey. Weighting by business size within sector was applied.

Results Annually, about 16.7% of workers reported experiencing a serious harm incident at work in the last 12 months. The serious harm incidents were statistically higher in workers who disagreed and strongly disagreed that ‘their boss encourages workers to speak up if they felt something is unsafe’ (Odds ratio (OR)= 2.4, 95% Confidence Interval (CI) (1.9 - 2.6 ), ‘their boss encourages workers to come up with ideas for how to make them safer’ (OR=1.5, 95% CI (1.3–1.8)), and ‘When their boss makes decisions about workplace health and safety, workers are always told how their views have been considered’ (OR=1.7, 95% CI (1.4– 2.0)). Regression model indicated that decreased serious harm is unsafe front line to identify what works and what doesn’t, using focus groups and influence mapping as a guide to the creation of cultural interventions. A strong prevention bias in safety thinking doesn’t offer a robust understanding of the complexity of high consequence events. Despite the best risk assessments, procedures, and people, we simply cannot prevent all incidents. We must instead balance prevention efforts with capacity to respond and recover when things go badly. But how do we promote this concept within our operations?

This session offers a model we are using as a simple visual framework to stimulate dialogue and promote learning, shared understanding and safety differently language. The model is an adaptation of the bow-tie as a propeller. It includes preventive, operational and recovery elements placed in a dynamic mode, represented by turning blades – within a margin of manoeuvre sphere.

On one side of the bow-tie, prevention efforts deter threats, while on the other side capacity to respond to events reduces impact. The centre represents operational activity and an event moment. This is also the moment when workers recognize anomaly and make sense of the information, learn in the moment, and innovate a change to the system.

The bow-tie is depicted inside a sphere of influence representing margin of manoeuvre. Positive influences create outward force, maintaining a buoyant sphere. Negative influences put pressure on the system, reduce its size, robustness and even collapse it. An unbalanced bow-tie can also collapse the system.

When we conceptually shift from bow-tie to propeller, the model becomes dynamic, demonstrating how learning creates a feedback loop to improve the entire system- including preventive, operational and response/recovery components.

7A – Child – Road, March 25, 2021

7A.001 ADOLESCENT’S PERCEPTION OF ROAD RISK ON THEIR ROUTES TO SCHOOL IN MAKWANPUR, NEPAL; A QUALITATIVE STUDY

Preeti Gautam*, Julie Mytton, Paul Pilkington, Sunil Joshi. Nepal Injury Research Centre, Kathmandu Medical College Public Limited, Kathmandu, Nepal; University of the West of England, Bristol, UK

Background Busy and poor road infrastructure along routes to school poses high risk of traffic injury for children. Every child’s safe and healthy journey to/from school is fundamental to achieving Sustainable Development Goal 3.6. However, there is little evidence reporting children’s views about their school travel from developing countries. This study aims to understand children’s perceptions of injury risks on their journey to school in Nepal.

Methods We used Photo-Elicitation Interview (PEI) methods to collect data from 14 children (12–16 years) who walk to school along the East-West Highway in Makwanpur, Nepal. The children used a camera to record parts of their journey, which they perceived as dangerous. Photographs were used as prompts during an interview afterwards. Interviews were audio-recorded, transcribed, translated and analysed thematically using NVivo.

Results Several themes were identified, categorised under environmental and behavioural factors. The children were