6A – Child – School/Road, March 25, 2021

6A.001 AN EVALUATION OF THE SCHOOL-BASED HELMET PROGRAM IN MYANMAR

1Pagna Kim*, 2Linh PHAM, 3Piseth IM, 4Damon RUSDEN, 5Mieh YO, 6AIP Foundation, Tuol Svay Prey I Commune, Boeung Keng Kang District, Cambodia; 7AIP Foundation, 74 Mac Dinh Chi Street, District 1, Vietnam

10.1136/injuryprev-2021-safety.148

Context The road safety situation in Myanmar is deteriorating. It has experienced a dramatic increase in the number of road fatalities and injuries. The majority of fatalities occurs among 2–3 wheel motorcyclists, which accounted for 58% of total road deaths. Motorcycle safety is a major issue for Mandalay Region, with robust efforts being reported by the police to improve helmet wearing.

Process The Myanmar Road Safety Action Plan 2014–2020 intends to achieve a 90% helmet-wearing rate across the country. Recognizing the danger to safety, the AIP Foundation implemented the Helmet Education and Distribution (HED) program in Mandalay in 2017.

Objectives - Increase helmet use among students who are often motorcycle passengers.
- Improve the road safety knowledge of teachers and students.
- During 2018–2020 the program donated 5,027 helmets and educated 7,392 students at six program schools.

Analysis To assess the effectiveness of intervention activities, monitoring and evaluation methodologies were applied. One method was filmed helmet observation, and the other was a questionnaire for base-line knowledge across two periods: pre- and post-intervention.

Outcomes Overall, helmet-wearing rates increased from 1.9% pre-intervention to 53.3% post-intervention. The knowledge about helmet safety of students of all grades improved, with the percentage of students receiving good and excellent scores increasing from 45% to 62%.

Learning Outcomes The success of HED in Mandalay provides critical evidence to support the expansion of this school program. Furthermore, improving enforcement and community awareness is crucial to increasing helmet use and contributing to sustainably reduce road traffic fatalities in Myanmar.

6A.002 TRAFFIC CALMING IMPLEMENTATION AROUND ELEMENTARY SCHOOLS: STEPPED WEDGE RCT

1,2,5,7Brent Hagel. 1,2,5,7Alberto Nettel-Aguirre, 1,2,5,7Brent Hagel. 1Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada; 2Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; 3Traffic Safety, City of Calgary, Calgary, Canada; 4Institute national de la recherche scientifique, Montreal, Canada; 5Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada; 6Alberta Children’s Research Institute, University of Calgary, Calgary, Canada; 7O’Brien Institute for Public Health, University of Calgary, Calgary, Canada

10.1136/injuryprev-2021-safety.149

Background Motor-vehicle collisions are a leading cause of child bicyclist and pedestrian injuries in Canada. Injury occurrence and severity are associated with vehicle speeds but may be moderated through traffic calming. As a third of child bicyclist and pedestrian injuries occur within 300 meters of schools, it is important to focus interventions at these locations. This study will compare the effect of two traffic calming measures (i.e., in-street signs and traffic-calming-curbs) around elementary (K-Gr8) schools in Calgary.

Methods Using a stepped-wedge cluster randomized controlled trial, 70 eligible elementary schools will be randomly assigned one traffic calming intervention, installed between April and August 2020. Traffic speed and volume (pneumatic tubes), and active transportation prevalence (observational counts), will be collected one week before and one week after intervention installation. Change in outcomes between pre- and post-intervention will be compared within schools for each intervention type. Post-intervention data will also be compared with pre-intervention data from schools yet to receive the intervention. Analyses will include generalized linear mixed effects models.

Results Reductions in vehicle speeds are expected for both traffic calming features. Smaller changes in traffic volume and active transportation are expected across all traffic calming features. Greater effects are expected from traffic-calming-curbs.

Discussion Scientific evidence on traffic calming intervention effectiveness may improve municipal decision-making, standards for new construction, prioritization of interventions in other jurisdictions, and inform further study in non-school environments. This study is a partnership between the City of Calgary and the University of Calgary.