Supplemental 4: Risk of Bias assessments

Reference		Selection bias	Study design	Confounders bias	Blinding bias	Data collection	Withdrawal and drop-out	Global rating
Lester et al. 1996	S1	Strong	Moderate	Weak	Strong	Weak	Not Applicable	WEAK
Etzersdorfer et al. 1998	S2	Weak	Moderate	Weak	Strong	Weak	Not Applicable	WEAK
Niederkrotenthaler et al. 2007	S3	Weak	Moderate	Strong	Strong	Strong	Not Applicable	MODERATE
Till et al. 2013	S4	Strong	Moderate	Strong	Strong	Weak	Not Applicable	MODERATE
Matsubayashi, Ueda, et al 2014	S5	Strong	Moderate	Strong	Strong	Moderate	Not Applicable	MODERATE
Lockley et al. 2014	S6	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Ross et al. 2020	S7	Moderate	Weak	Weak	Strong	Strong	Not Applicable	WEAK
Hegerl et al. 2019	S8	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Hegerl et al. 2006	S9	Moderate	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Hegerl et al. 2010	S10	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	MODERATE
Szekely et al. 2013	S11	Moderate	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Motohashi et al. 2007	S12	Moderate	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
King et al. 2005	S13	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	MODERTE
Stack et al. 2015	S14	Strong	Moderate	Strong	Strong	Weak	Not Applicable	MODERATE
Studdert et al. 2010	S15	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Nordentoft et al. 2006	S16	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Nordentoft et al. 2007	S17	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Pridemore et al. 2009	S18	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Myung et al. 2012	S19	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Cha et. 2015	S20	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Kim et al. 2017	S21	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Yamasaki et al. 2005	S22	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Morgan et al. 2007	S23	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Hawton ey al. 2013	S24	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Lester et al. 1992	S25	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Skilling et al. 2008	S26	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Cylus et al. 2014	S27	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG

Kaufman et al. 2020	S28	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Gertner et al. 2019	S29	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Rambotti et al. 2020	S30	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Birckmayer et al. 1999	S31	Strong	Moderate	Strong	Strong	Weak	Not Applicable	MODERATE
Grucza et 2012	S32	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Markowitz et al. 2003	S33	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Son et al. 2011	S34	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Grucza et al. 2014	S35	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Chapman et al., 2006	S36	Strong	Moderate	Weak	Strong	Moderate	Not Applicable	MODERATE
Baker et al., 2007	S37	Strong	Moderate	Weak	Strong	Moderate	Not Applicable	MODERATE
Klieve et al, 2009	S38	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Lee et al., 2010	S39	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
McPhedran et al., 2012	S40	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Chapman et al. 2016	S41	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Gilmour et al. 2018	S42	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Snowdown et al., 1992	S43	Strong	Weak	Weak	Strong	Strong	Not Applicable	MODERATE
Cantor et al., 1995	S44	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Ozanne-Smith et al. 2004	S45	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Kapusta et al., 2007	S46	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Niederkrotenthaler et al., 2009	S47	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Konig et al. 2018	S48	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Rich et al. 1990	S49	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Lester et al., 1993	S50	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Carrington et al., 1994	S51	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Leenaars et al., 1997	S52	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Bridges, 2004	S53	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Caron, 2004	S54	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Caron et al. 2008	S55	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Thomsen et al., 1991	S56	Strong	Weak	Weak	Strong	Strong	Not Applicable	WEAK
Lubin et al. 2010	S57	Weak	Moderate	Weak	Strong	Weak	Not Applicable	WEAK
Beautrais et al. 2006	S58	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Ludwig et al., 2000	S59	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Conner et al., 2003	S60	Weak	Weak	Strong	Strong	Weak	Not Applicable	WEAK

Madhavan et al. 2019	S61	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Cummings et al. 1997	S62	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Sen et al., 2012	S63	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Sloan et al. 1990	S64	Strong	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Loftin et al. 1991	S65	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Crifasi et al. 2015	S66	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Marinelli et al., 2013	S67	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Kivisto et al. 2018	S68	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Castillo-Carniglia et al. 2019	S69	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Rosengart et. 2005	S70	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Rodriguez Andres et al., 2011	S71	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Fleegler et al. 2013	S72	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Anestis, Khazem, et al. 2015	S73	Strong	Weak	Weak	Strong	Moderate	Not Applicable	WEAK
Anestis & Anestis, 2015	S74	Strong	Weak	Weak	Strong	Moderate	Not Applicable	WEAK
Anestis et al. 2017	S75	Strong	Moderate	Weak	Strong	Moderate	Not Applicable	MODERATE
Kaufman et al. 2018	S76	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Anestis et al. 2019	S77	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Siegel et al. 2019	S78	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Ghiani et al. 2019	S79	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Leung et al. 2019	S80	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Ohberg et al. 1997	S81	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Bellanger et al. 2006	S82	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Nakanishi et al. 2020	S83	Moderate	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Lee et al. 2018	S84	Moderate	Weak	Strong	Strong	Strong	Not Applicable	MODERATE
Baran et al. 2015	S85	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE
Lang et al. 2011	S86	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Matsubayashi et al. 2011	S87	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Law et al. 2014	S88	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Perron et al. 2013	S89	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Sinyor et al. 2010	S90	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Sinyor et al. 2016	S91	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Matsubayashi et al. 2013	S92	Strong	Moderate	Strong	Strong	Moderate	Not Applicable	MODERATE

Matsubayashi, Swada, Ueda. 2014	S93	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Ueda et al. 2015	S94	Strong	Moderate	Strong	Strong	Weak	Not Applicable	MODERATE
Beautrais et al. 2009	S95	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Skegg et al. 2009	S96	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Chung et al. 2016	S97	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Reisch et al. 2005	S98	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Hemmer et al. 2017	S99	Strong	Moderate	Strong	Strong	Strong	Not Applicable	STRONG
Bennewith et al. 2007	S100	Strong	Moderate	Weak	Strong	Strong	Not Applicable	MODERATE