and a 3-level Sport Risk Index (Low, Medium, High). Random intercepts G-side log-binomial regression was used to model between- and within-school variability in concussion risk in NCAA athletes. Three concussion outcomes were modeled: all SRCs, competition SRCs only, and practice SRCs only.

Results School-Level Risk Factors: In fully adjusted models with all SRCs as the outcome, Sport Risk Index was the strongest predictor (risk ratio (RR) of 6.0; 95%CI: 4.4, 8.1, for the High vs. Low categories of the Index). Concussion risk was higher in Division I schools than in Division 2 (RR=1.6, 95%CI: 0.6, 4.2) and Division 3 schools (RR=1.8, 95%CI: 0.9, 3.6) schools. Military academies had an elevated risk of SRC (RR=1.5); 95%CI: 0.7, 3.3; analysis limited to NCAA athletes). School-Level Variability: Most of the variability in SRC risk was at the level of the athlete, not at the school. For all three outcomes, the within-school (athlete-level) variance was over five times the between-school variance. Adjusting for our three school-level risk factors (Division, Mil/ Civ, and Sport Risk Index) removed 40% of the variation between schools for competition SRC, and 25% for overall SRCs and practice SRCs.

Conclusions Sport-level factors predict concussion risk, and a substantial portion of variability in concussion risk between schools is readily explainable.

Significance and Contributions to Injury and Violence Prevention Science Understanding school-level determinants and variability in concussion risk may identify opportunities for interventions to reduce SRC incidence.

Epidemiology of TBI

Introduction During 2014, unintentional falls was one of the most common mechanisms of injury contributing to a traumatic brain injury (TBI)-related death and accounted for 29% of all TBI-related deaths in the U.S. Current information on national and state trends and decedent characteristics for this type of health event is lacking.

Methods The national incidence of TBI-related deaths attributable to falls was determined by analyzing the multiple-cause-of-death files within the National Vital Statistics System. A death was determined to be TBI-related if any of the multiple-cause-of-death codes listed in the death record indicated a TBI-related diagnosis. TBI-related deaths attributed to unintentional falls were identified based on the single underlying-cause-of-death, specifically ICD-10 codes W00-W19, listed in each death record. Annual incidence rates were calculated per 100,000 population and age-adjusted to the U.S. year 2000 standard age distribution. Data years 2008–2017 were selected to produce 10-year age-adjusted national and state-specific trends that were modeled using the National Cancer Institute Joinpoint Regression Program. Estimated rate trends are reported in the form of average annual percentage changes accompanied by 95% confidence intervals. National rate trends of TBI-related deaths attributed to falls were analyzed by sex, age group, ethnicity/race, and level of urbanization.

Results During 2017, there were 17,408 TBI-related deaths attributed to unintentional falls in the U.S. From 2008 to 2017, there was a 17% increase in the national rate of TBI-related deaths due to falls. Analysis of decedent characteristics revealed the fastest-growing rates of this specific health event were among older adults aged ≥75 years and persons living in non-core, non-metropolitan counties. At the state level, rates of TBI-related deaths due to falls increased significantly for 29 states from 2008–2017.