Supplement to Alcohol Outlets and Firearm Violence: A place-based case-control study using satellite imagery and machine learning

This code extracts generic features from aerial imagery, then converts these features to 2 latent dimensions for place-based matching. Here we use VGG16, a pretrained convolutional neural network (CNN), and extract features from the 3rd convolutional block. Next we use t-stochastic neighbor embedding to convert 256 features to 2.

While alternative methods, e.g. convolutional autoencoders, could convert imagery into 2D latent space more directly, the approach below takes advantage of VGG16’s pretraining, is readily implemented in Python, and builds upon methods (e.g. CNN feature extraction) that may be familiar to novice deep learning users.

Note: the code below was originally written and executed in Python 2. Some code may require updating to run in Python 3. These tasks required < 2hrs to run on an AWS p2.xlarge instance. Running this code without GPU is not recommended for large datasets (e.g. over 5000 locations).

```python
In [ ]:
# load packages
import pandas as pd
import numpy as np
import pickle
from sklearn.manifold import TSNE

# requires the Keras deep learning API: https://keras.io/
import keras.applications
from keras.applications import vgg16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
from keras.models import Model
from keras import backend as K

1. Extract features

In [11]:
# load the VGG16 model
model = vgg16.VGG16(weights='imagenet', include_top=True, input_shape=(224,224,3))
model.layers.pop()
model.outputs = [model.layers[-12].output] #extract the output of the pooling layer of the 3rd convolutional block
model.layers[-12].outbound_nodes = []
model.summary() #summarize full model for inspection
```

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_4 (InputLayer)</td>
<td>(None, 224, 224, 3)</td>
<td>0</td>
</tr>
<tr>
<td>block1_conv1 (Conv2D)</td>
<td>(None, 224, 224, 64)</td>
<td>1792</td>
</tr>
<tr>
<td>block1_conv2 (Conv2D)</td>
<td>(None, 224, 224, 64)</td>
<td>36928</td>
</tr>
<tr>
<td>block1_pool (MaxPooling2D)</td>
<td>(None, 112, 112, 64)</td>
<td>0</td>
</tr>
<tr>
<td>block2_conv1 (Conv2D)</td>
<td>(None, 112, 112, 128)</td>
<td>73856</td>
</tr>
</tbody>
</table>
Supplementary material

Inj Prev

26 2020; Inj Prev

Jay J.

<table>
<thead>
<tr>
<th>block2_conv2 (Conv2D)</th>
<th>(None, 112, 112, 128)</th>
<th>147584</th>
</tr>
</thead>
<tbody>
<tr>
<td>block2_pool (MaxPooling2D)</td>
<td>(None, 56, 56, 128)</td>
<td>0</td>
</tr>
<tr>
<td>block3_conv1 (Conv2D)</td>
<td>(None, 56, 56, 256)</td>
<td>295168</td>
</tr>
<tr>
<td>block3_conv2 (Conv2D)</td>
<td>(None, 56, 56, 256)</td>
<td>590080</td>
</tr>
<tr>
<td>block3_conv3 (Conv2D)</td>
<td>(None, 56, 56, 256)</td>
<td>590080</td>
</tr>
<tr>
<td>block3_pool (MaxPooling2D)</td>
<td>(None, 28, 28, 256)</td>
<td>0</td>
</tr>
<tr>
<td>block4_conv1 (Conv2D)</td>
<td>(None, 28, 28, 512)</td>
<td>1180160</td>
</tr>
<tr>
<td>block4_conv2 (Conv2D)</td>
<td>(None, 28, 28, 512)</td>
<td>2359808</td>
</tr>
<tr>
<td>block4_conv3 (Conv2D)</td>
<td>(None, 28, 28, 512)</td>
<td>2359808</td>
</tr>
<tr>
<td>block4_pool (MaxPooling2D)</td>
<td>(None, 14, 14, 512)</td>
<td>0</td>
</tr>
<tr>
<td>block5_conv1 (Conv2D)</td>
<td>(None, 14, 14, 512)</td>
<td>2359808</td>
</tr>
<tr>
<td>block5_conv2 (Conv2D)</td>
<td>(None, 14, 14, 512)</td>
<td>2359808</td>
</tr>
<tr>
<td>block5_conv3 (Conv2D)</td>
<td>(None, 14, 14, 512)</td>
<td>2359808</td>
</tr>
<tr>
<td>block5_pool (MaxPooling2D)</td>
<td>(None, 7, 7, 512)</td>
<td>0</td>
</tr>
<tr>
<td>flatten (Flatten)</td>
<td>(None, 25088)</td>
<td>0</td>
</tr>
<tr>
<td>fc1 (Dense)</td>
<td>(None, 4096)</td>
<td>102764544</td>
</tr>
<tr>
<td>fc2 (Dense)</td>
<td>(None, 4096)</td>
<td>16781312</td>
</tr>
</tbody>
</table>

Total params: 134,260,544
Trainable params: 134,260,544
Non-trainable params: 0

In [10]:
[model.layers[-12].output] #confirm output of the layer from which we'll extract

Out[10]:
[<tf.Tensor 'block3_pool_2/MaxPool:0' shape=(?, 28, 28, 256) dtype=float32>]

In [5]:
load your dataset with one row per location, if easy--otherwise just enter the length manually below
dataset_name = <YourDatasetName>
dataset = pd.read_csv(dataset_name)
len(dataset)

Out[5]:
24408

In []:

NOTE: this code is adapted from: http://www.cs.virginia.edu/~vicente/vislang/notebooks/visual_recognition_lab.html
Any errors are my own

max = len(dataset)

features = np.zeros((max, 256), dtype=np.float32) #a placeholder for feature values

process images in batches
batch_size = 339 #a batch size that divides without remainder
n_batches = max / batch_size

index = 0
for b in range(0, n_batches):
 batch = np.zeros((batch_size, 224, 224, 3))
 print(('Computing features for batch %d of %d') % (b + 1, n_batches))
 for i in range(0, batch_size):
 img_path = "$./Images/im" + format((index+1), '05') + ".png" ### replace with your image locations
 img = image.load_img(img_path, target_size=(224, 224))
 img = image.img_to_array(img)
 batch[i, :, :, :] = img
 index = index + 1
 print(('Batch loaded for batch %d of %d') % (b + 1, n_batches))
 batch = vgg16.preprocess_input(batch)
 y = np.mean(model.predict(batch), axis=(1, 2)) # collapse layers to 1D by averaging (for one 256-long vector per image)
 features[b * batch_size : (b + 1) * batch_size, :] = y
np.save(open('vgg-block3-features.npy', 'w'), features)

2. Reduce dimensions to 2

In []:

Load image features
features = np.load(open('vgg-block3-features.npy'))

Implement TSNE over 2 dimensions. Runtime depends on number of images and computing power.
X_embedded = TSNE(n_components=2, perplexity=50, verbose=2).fit_transform(features)

Save results
np.savetxt("TSNE_mapping.csv", X_embedded)

NOTE: matching was conducted in R using a simple loop, with parameters described in the article. Code available upon request to author.