ORIGINAL ARTICLE

“Risk Watch”: Cluster randomised controlled trial evaluating an injury prevention program

Denise Kendrick, Lindsay Groom, Jane Stewart, Michael Watson, Caroline Mulvaney, Rebecca Casterton

Objective: to evaluate the effectiveness of a school-based injury prevention program.
Design: Cluster randomised controlled trial.
Setting: 20 primary schools in Nottingham, UK.
Participants: 459 children aged 7 to 10 years.
Intervention: The “Risk Watch” program delivered by teachers, aimed at improving bike and pedestrian, falls, poisoning and fire and burns safety.
Main outcome measures: Safety knowledge, observed safety skills and self-reported safety behaviour.
Results: At follow-up, intervention group children correctly answered more fire and burn prevention knowledge questions than control group children (difference between means 7.0% (95% CI 1.5% to 12.6%)). Children in intervention group schools were more likely to know the correct actions to take if clothes catch fire and the correct way to wear a cycle helmet (difference between school means 35.3% (95% CI 22.7% to 47.9%) and 6.3% (95% CI 1.4% to 11.1%) respectively). They were also more likely to know the correct actions to take in a house fire and on finding tablets (OR 2.80 (95% CI 1.08 to 7.22) and OR 3.50 (95% CI 1.18 to 10.38) respectively) and correctly demonstrated more safety skills than control group children (difference between means 11.9% (95% CI 1.4% to 22.5%)). There was little evidence to suggest the first year of the program impacted on self-reported safety behaviours.
Conclusions: The Risk Watch program delivered by teachers in primary schools increased some aspects of children’s safety knowledge and skills and primary schools should consider delivering this program. Longer term, larger scale evaluations are required to examine retention of knowledge and skills and impact on safety behaviours and child injury rates.

Schools have an important role to play in child injury prevention. School based educational programs can increase cycle helmet wearing, improve road crossing and cycling behaviour and the prevention of poisoning. School-based injury prevention programs aimed at preventing a range of injuries including the “Lifeskills” program, the injury minimisation program for schools (IMPS) in the UK and the “Risk Watch” program in the USA and Canada have all demonstrated improvements in knowledge, attitudes or self-reported behaviours and several have demonstrated improvements in observed safety behaviour or safety skills.

The UK Fire and Rescue Service is developing its role in fire prevention, including working with schools to promote fire safety within the curriculum. As part of this the Risk Watch Injury Prevention program has been piloted in some UK schools. Risk Watch is an educational injury prevention program, developed in the USA and adapted for use in the UK by Nottinghamshire Fire and Rescue Service. It aims to help children and families create safer homes and communities by teaching the knowledge and skills they need to make positive choices about their personal safety and well-being. It employs a variety of educational approaches including practicing making safer choices, resisting peer pressure to take risks and influencing family members and others to take action to reduce risks. Opportunities exist for a variety of other organisations and agencies to reinforce classroom lessons with additional information and a real world perspective.

Although some positive findings have emerged from Risk Watch evaluations in the USA and Canada, these may not be generalisable in to the UK. As yet no randomised controlled trials have been published evaluating Risk Watch in the UK. We therefore report findings from such a trial amongst primary school children in Nottingham, UK.

METHODS

Participants
All 88 state-funded primary (ages 5–11) or junior (ages 8–11) schools in Nottingham City were invited to teach the Risk Watch program and those agreeing (n = 58) were invited to take part in the trial. As we were unable to fulfil our sample size requirements from Nottingham City schools, the first two Nottinghamshire County schools who agreed to teach Risk Watch were also invited to participate in the trial. In total 60 schools were invited to participate in the trial. Children in one class per participating school, of years 3 (age 7–8), 4 (age 8–9) or 5 (age 9–10) whose parents did not withhold consent and who completed a baseline questionnaire, were eligible to participate.

Intervention
Teachers in participating schools delivered the Risk Watch intervention. They were trained to deliver the intervention by Fire Service personnel or by other teachers who had been trained by Fire Service personnel. The Fire and Rescue Service provided free teaching resources including Risk Watch folders and “Risky Boxes”. Folders were targeted at specific age groups, with one folder for years 3 and 4 and one for year 5 and included background information, lesson plans and activities for pupils (table 1). Each folder covered eight topic areas, four of which were chosen for the evaluation: bike and pedestrian

Abbreviation: IMPS, injury minimisation program for schools
safety, falls, poisoning, fire and burns. These topics were chosen because they result in the most frequent and severe injuries in the UK for primary school children.14–15 Risky Boxes included resources and materials for use during lessons (see http://www.notts-fire.gov.uk/Internet/NottsFR/nottinghamshirefire-andrescue.nsf/HomeFrame?OpenFrameSet for more details). Each participating school agreed to teach at least one Risk Watch topic of their choice from the four chosen for the evaluation. The control group schools agreed to delay delivering the Risk Watch program until follow up assessments had been made.

Objective
To evaluate the effectiveness of the Risk Watch program in increasing safety knowledge and skills, and self-reported safety behaviour.

Outcomes
The primary outcome measure was safety knowledge. Secondary outcome measures included self-reported safety behaviour, observed safety skills and teachers’ views of, and satisfaction with teaching the Risk Watch program.

Children’s knowledge and self-reported behaviour were measured using age-appropriate pencil and paper questionnaires completed in the classroom at baseline and follow-up. These questionnaires also recorded age, gender and whether the family had access to a car, the latter being an indicator included in the Townsend deprivation score16 which is commonly used in health research in the UK. We considered this a suitable indicator of socio-economic status as children aged seven should be able to provide such information. Knowledge questions were illustrated pictorially and required ticking boxes or circling hazards. Researchers read questions aloud to the class to enable children with poorer literacy skills to complete questionnaires. Separate questionnaires were used for children in years 3 and 4 and year 5 as the objectives of Risk Watch varied by age.

The questionnaire was initially piloted on 52 children from one school. After making amendments, it was re-piloted on a further 48 children from two schools. In total it was piloted on 42 children aged 7–8 years (48% boys) and 38 aged 9–10 years (45% boys). Two of the schools had a lower percentage and one had a similar percentage of children receiving free school meals to the national average.

Safety skills were assessed at follow-up in a random sample of eight children from each school by observation of role-play in three age-appropriate injury scenarios. Children in years 3 and 4 were required to demonstrate the “Stop, drop and roll” procedure, crossing a road safely and what to do in the event of a poisoning. Children in year 5 were required to demonstrate what to do in a domestic fire, crossing a road safely and putting on a cycle helmet correctly. Each skill comprised 4–5 elements with marks awarded for each element correctly demonstrated (maximum 5 marks per scenario). One child was assessed at a time, jointly by two observers who also took part in the role play. The skills assessment tool was piloted on eight children from two pilot schools.

At the end of the study a postal questionnaire was sent to all teachers of intervention group classes. The questionnaire asked about which Risk Watch topics were taught, teachers’ views of, and satisfaction with teaching Risk Watch, usefulness of the materials and training, use of activities involving pupils’ parents as part of Risk Watch and involvement of local organisations with an injury prevention role.

Sample size
Based on data from the first pilot, the mean percentages of questions answered correctly were 40% (SD 20%) for years 3 and 4 and 59% (SD 20%) for year 5. A sample size of 226 (113 in each group) would allow an absolute difference of 7.5% of questions answered correctly to be detected between treatment
groups (80% power and a 2-sided 5% significance level). The design effect was estimated as 2.2 based on a mean class size of 25 and an ICC of 0.05. The required sample size therefore totalled 498, with 249 children (equivalent to 10 schools) per group.

Assignment
Schools were stratified by tertiles of the percentage of children receiving free school meals, and randomly allocated within strata to treatment group. One member of the research team (DK) generated the computerised allocation schedule and a researcher independent of the trial, allocated schools to treatment group.

Masking
It was not possible to blind participants or teachers to treatment group allocation. Researchers doing outcome assessments were blinded to treatment group allocation, but maintaining blinding was not always possible as teachers frequently mentioned teaching Risk Watch at follow up assessments. Data entry was undertaken blind to allocation.

Ethical approval
An ethical review of the trial was provided by Lincolnshire local research ethics committee.

Statistical analyses
Data were entered into an Access database. All 25 questionnaires completed in one school were double entered by a second researcher and discrepancies identified. The error rate was 0.4% of data field entries. Scores were created which represented the percentage of correct responses for safety knowledge for each topic area and the percentage of correctly demonstrated safety skills, for each topic area and for all safety skills.

Balance of characteristics between treatment groups was assessed informally. Random effects models were used to adjust for clustering by school. Linear regression was used to estimate differences between the means for knowledge scores. Logistic regression was used to estimate odds ratios for binary knowledge or safety practices questions and for skewed scores which were categorised as all questions or skills correct versus fewer. All models were adjusted for stratum, school level baseline values, child age, gender and car ownership. Linear

Schools invited to participate in the trial (those agreeing to teach “Risk Watch”) n = 60
Excluded: Refused to participate in trial n = 30
Did not respond to invitation n = 8

Schools agreeing to participate in trial and randomised n = 22 (36.7%)

Schools allocated to intervention arm n = 11
Received allocated intervention n = 11
Classes included:
Year 3 n = 2, Year 3/4 n = 3, Year 4 n = 3
Year 5 n = 3

Schools allocated to control arm n = 11
Received allocated intervention n = 9
Classes included:
Year 3 n = 2, Year 3/4 n = 1, Year 4 n = 3, Year 5 n = 3
Schools withdrew before baseline data collection n = 2

Invited to participate n = 242 children from 11 schools
Participants n = 240 (99.2%)
Consent withheld n = 1 (0.4%)
Child left classroom during data collection n = 1 (0.4%)

Participants n = 219 (98.6%)
Consent withheld n = 1 (0.5%)
Baseline data excluded as teacher helped child complete questionnaire n = 2 (0.9%)

Topics taught by schools:
Fire and burn prevention n = 9
Falls prevention n = 4
Bike and pedestrian safety n = 9
Poisoning prevention n = 7

Numbers of topics taught by schools:
1 topic n = 3
2 topics n = 2
3 topics n = 2
4 topics n = 4

Lost to follow up:
Schools n = 0
Participants n = 37 (15.4%): Not present at follow up assessment n = 35 (14.6%)
Withdrawn n = 0 (0%)
Child left classroom during data collection n = 2 (0.8%)

Outcome data available:
Schools n = 11 (100%)
Participants n = 203 (84.6 %)

Lost to follow up:
Schools n = 0
Participants n = 31 (14.2%): Not present at follow up assessment n = 30 (13.7%)
Withdrawn n = 0 (0%)
Child left classroom during data collection n = 1 (0.5%)

Outcome data available:
Schools n = 9 (100%)
Participants n = 188 (85.8%)

Figure 1 Flow of schools and participants through trial.
regression was also used to estimate differences between the means for safety skills with models adjusted for stratum. As some knowledge questions were asked only of children in some year groups resulting in a small number of schools providing data, these were summarised at school level and means were compared using t tests weighted by the number of participants from each school. Pre-specified sub-group analyses examining whether the treatment effect varied by age, gender or car ownership were undertaken by adding interaction terms to models.

Participants were analysed by treatment group regardless of whether they received the intervention, so those who were absent during Risk Watch teaching were included in the analysis. As schools were free to choose which topics they taught, they were only included in the analysis for the topics they had chosen to teach. Models were checked by examining plots of residual values. Data were analysed using Stata version 8.

RESULTS
Participant flow and follow up
The flow of schools and participants through the trial is shown in fig 1. Twenty two schools were recruited, two of which withdrew after randomisation but prior to completing baseline questionnaires. In total 20 schools and 459 children participated in the trial. Baseline assessments were undertaken between 15/11/04 and 28/04/05 and follow up assessments between 14/04/05 and 28/06/05. The median time between assessments was 126 days (IQR 106, 140) in the intervention group and 120 days (IQR 79, 131) in the control group.

Analysis
Ninety percent of participating schools enrolled children aged 3–11 years, all were mixed sex schools and the median percentage of children receiving free school meals was 29.5% (IQR 21.5%, 41.0%). Characteristics of participants and self-reported safety behaviours are shown in table 2 and safety knowledge in table 3. There was some evidence that intervention group children were younger and were more likely to come from families without access to a car than control group children, otherwise treatment groups were well balanced at baseline.

At follow up intervention group children correctly answered a significantly higher percentage of fire and burn prevention questions than control group children. No significant difference was found for knowledge of poisoning, falls prevention or bike and pedestrian safety (table 4). Analyses of specific knowledge questions indicated that intervention group children were significantly more likely to know the actions to take if clothes catch fire and the correct way to wear a cycle helmet than control group children (difference between school means 35.3% (95% CI 22.7% to 47.9%) and 6.3% (95% CI 1.4% to 11.1%) respectively). They were also significantly more likely to know the actions to take in a house fire and on finding tablets than control group children (OR 2.80 (95% CI 1.08 to 7.22) and OR 3.50 (95% CI 1.18 to 10.38) respectively).

Risk Watch was more effective in increasing fire and burn prevention knowledge amongst younger than older children (difference between means age 7 = 19.5% (95% CI 7.3% to 31.7%); age 8 = 9.3% (95% CI 1.9% to 16.7%); age 9 = 5.4% (95% CI –1.1% to 12.0%); age 10 = –3.8% (95% CI –13.3% to 5.6%); p = 0.04). It was also more effective in increasing bike and pedestrian safety knowledge amongst boys than girls (difference between means boys = 5.4% (95% CI –0.2% to 11.0%); girls = –3.6% (95% CI –9.3% to 2.0%); p = 0.003). There were no significant differences for other scores by age, sex or car ownership.

There was little evidence of an impact on self-reported safety behaviours. Intervention group children were only significantly more likely to report never playing with matches (OR 1.84 (95% CI 1.06 to 3.20), p = 0.03). In terms of safety skills (table 5), intervention group children were significantly more likely to correctly demonstrate all procedures to follow if clothes catch fire and they demonstrated a significantly higher percentage of correct actions overall than control group children.

The eleven classes in which Risk Watch was taught had a total of 12 teachers, 11 (92%) of whom completed the follow up questionnaire. The majority (8, 73%) of teachers used the background information in the Risk Watch folders and told the children about the safety rules (10, 91%). Most teachers modified the lesson plans (8, 80%). Fewer than half the teachers used materials from the Risky boxes (4, 36%), used outside organisations to support the teaching (5, 46%), gave children activities to undertake with their parents at home (3, 27%) or organised activities outside school premises (1, 9%).

DISCUSSION
Principal findings
The first year of delivery of the Risk Watch program in primary schools was effective in increasing some aspects of children’s knowledge of fire and burn prevention, poisoning prevention and of bike and pedestrian safety. The program was more

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Control group (%)</th>
<th>Intervention group (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (1)</td>
<td>114 (52.3)</td>
<td>123 (51.3)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>36 (16.4)</td>
<td>56 (23.3)</td>
</tr>
<tr>
<td>8</td>
<td>70 (32.0)</td>
<td>83 (34.6)</td>
</tr>
<tr>
<td>9</td>
<td>86 (39.3)</td>
<td>63 (26.3)</td>
</tr>
<tr>
<td>10</td>
<td>27 (12.3)</td>
<td>38 (15.8)</td>
</tr>
<tr>
<td>Family does not have car (4)</td>
<td>31 (14.2)</td>
<td>63 (26.6)</td>
</tr>
<tr>
<td>Safety behaviours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has smoke alarm at home (4)</td>
<td>179 (83.3)</td>
<td>213 (88.8)</td>
</tr>
<tr>
<td>Never uses matches (6)</td>
<td>165 (76.7)</td>
<td>183 (76.9)</td>
</tr>
<tr>
<td>Never cooks food without adult present (10)</td>
<td>163 (77.3)</td>
<td>202 (84.9)</td>
</tr>
<tr>
<td>Never gets medicine without asking adult (5)</td>
<td>180 (84.1)</td>
<td>202 (84.2)</td>
</tr>
<tr>
<td>Never plays on stairs (1)</td>
<td>122 (56.0)</td>
<td>115 (47.9)</td>
</tr>
<tr>
<td>Always wears helmet if rides bike (3)</td>
<td>65 (29.8)</td>
<td>77 (38.1)</td>
</tr>
<tr>
<td>Always wears reflective clothing in dark (6)</td>
<td>52 (24.3)</td>
<td>60 (25.1)</td>
</tr>
<tr>
<td>Never runs across road if car coming (2)</td>
<td>142 (65.4)</td>
<td>162 (67.5)</td>
</tr>
<tr>
<td>Uses zebra crossing, if there is one near every time crosses road (9)</td>
<td>130 (61.6)</td>
<td>146 (61.1)</td>
</tr>
</tbody>
</table>

(,), missing values
Furthermore, the intraclass correlation coefficients for our previous years. The effect demonstrated after the first year may upon knowledge and skills gained through the program in program, an incremental program aiming each year to build translate into improved safety skills. We were able to demonstrate that at least for fire and burn prevention. There was little evidence to suggest the first year of the program had an impact on self-reported safety behaviours.

Strengths and weaknesses of the trial

The strengths of our trial include recruiting the required number of schools and achieving high follow up rates in both treatment groups. Despite small numbers included in the skills assessment we were able to demonstrate that at least for fire and burn prevention, increases in safety knowledge did translate into improved safety skills.

Our trial evaluated the first year of teaching the Risk Watch program, an incremental program aiming each year to build upon knowledge and skills gained through the program in previous years. The effect demonstrated after the first year may therefore underestimate the program’s full impact. Furthermore, the intraclass correlation coefficients for our primary outcome measures were larger and the mean class size was smaller than those used in our sample size calculations; so some negative findings may reflect insufficient power. In addition two important elements of the program, namely involvement of parents and of other organisations or agencies, may require a longer period of time to achieve. This may partly explain the lack of impact on children’s safety behaviours, many of which would require parental involvement to change.

The majority of schools were in disadvantaged areas, so it may not be possible to apply our results to schools in more affluent areas. Furthermore our findings may also not be applicable to low or middle income countries.

Comparisons with previous research

There have been several evaluations in the US and in Canada of the Risk Watch program. A non-randomised controlled study compared changes in safety knowledge in children from schools using Risk Watch and comparison schools. Increases from baseline in knowledge scores across all topic areas for Grades 3–4 and 5–6 were between 3–8% points for Risk Watch schools and between 0–5% points for comparison schools, but the

Table 3

<table>
<thead>
<tr>
<th>Safety knowledge</th>
<th>Maximum number of hazards or actions to identify</th>
<th>Control group</th>
<th>Intervention group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questions for children in years 3 and 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR) number of fire hazards in the kitchen (1)</td>
<td>4</td>
<td>3 (2.4)</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Number (%) identifying correct actions for clothing fire (9)</td>
<td>-</td>
<td>58 (39.5)</td>
<td>62 (37.8)</td>
</tr>
<tr>
<td>Median (IQR) number of safe ways to cross road (4)</td>
<td>4</td>
<td>3 (2.4)</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Number (%) identifying walking facing oncoming traffic as safe (8)</td>
<td>-</td>
<td>61 (41.8)</td>
<td>73 (44.0)</td>
</tr>
<tr>
<td>Number (%) identifying safer clothing for pedestrian to wear in dark (13)</td>
<td>113 (79.0)</td>
<td>135 (82.3)</td>
<td></td>
</tr>
<tr>
<td>Number (%) identifying correct position for cycle helmet on head (5)</td>
<td>-</td>
<td>135 (93.1)</td>
<td>155 (91.2)</td>
</tr>
<tr>
<td>Number (%) identifying safest way to cross road with a bike (2)</td>
<td>-</td>
<td>53 (35.8)</td>
<td>58 (34.1)</td>
</tr>
<tr>
<td>Questions for children in year 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR) number of firework and bonfire hazards</td>
<td>6</td>
<td>5 (3.5)</td>
<td>5 (3.6)</td>
</tr>
<tr>
<td>Median (IQR) number of fire hazards in kitchen</td>
<td>4</td>
<td>3 (2.4)</td>
<td>2 (2.3)</td>
</tr>
<tr>
<td>Median (IQR) number of fall hazards</td>
<td>5</td>
<td>4 (3.4)</td>
<td>4 (3.4)</td>
</tr>
<tr>
<td>Median (IQR) number of safe ways to cross road (4)</td>
<td>2</td>
<td>1 (1.1)</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Number (%) identifying safer clothing for cyclist to wear in the dark</td>
<td>-</td>
<td>63 (91.3)</td>
<td>65 (85.7)</td>
</tr>
<tr>
<td>Number (%) identifying safer clothing for cyclist to wear in daytime (1)</td>
<td>-</td>
<td>13 (19.1)</td>
<td>18 (25.7)</td>
</tr>
<tr>
<td>Questions for children in years 3, 4 and 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR) number of actions to take in event of house fire (2)</td>
<td>3</td>
<td>2 (1.2)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Median (IQR) number of poisonous items identified in bathroom</td>
<td>5</td>
<td>3 (3.4)</td>
<td>3 (3.4)</td>
</tr>
<tr>
<td>Number (%) identifying correct action if finds tablets (9)</td>
<td>168 (79.6)</td>
<td>169 (70.7)</td>
<td></td>
</tr>
<tr>
<td>Median (IQR) number of situations in which cycle helmet should be worn (1)</td>
<td>4</td>
<td>3 (2.4)</td>
<td>3 (2.3)</td>
</tr>
<tr>
<td>Knowledge score for each topic (children in years 3, 4 and 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD) percentage correct responses for fire & burn prevention (10)</td>
<td>-</td>
<td>60.8 (17.8)</td>
<td>59.4 (17.7)</td>
</tr>
<tr>
<td>Mean (SD) percentage correct responses for poisoning prevention (9)</td>
<td>-</td>
<td>66.4 (16.8)</td>
<td>64.0 (15.8)</td>
</tr>
<tr>
<td>Mean (SD) percentage correct responses for bike & pedestrian safety (30)</td>
<td>-</td>
<td>67.5 (13.7)</td>
<td>65.4 (14.5)</td>
</tr>
<tr>
<td>Number (%) getting all responses correct for falls prevention</td>
<td>-</td>
<td>81 (37.0)</td>
<td>86 (35.8)</td>
</tr>
</tbody>
</table>

Regression coefficients and odds ratios compare intervention group children taught a particular Risk Watch topic with control group children.

Table 4

<table>
<thead>
<tr>
<th>Knowledge score for each topic for children in years 3, 4 and 5</th>
<th>ICC</th>
<th>Control group</th>
<th>Intervention group</th>
<th>Difference between means (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire & burn prevention (5)</td>
<td>0.187</td>
<td>73.5 (15.8)</td>
<td>79.2 (15.5)</td>
<td>7.0 (1.5, 12.6), p = 0.01</td>
</tr>
<tr>
<td>Poisoning prevention (6)</td>
<td>0.097</td>
<td>72.3 (15.1)</td>
<td>70.4 (13.5)</td>
<td>1.1 (–2.8, 5.1), p = 0.57</td>
</tr>
<tr>
<td>Bike & pedestrian safety (11)</td>
<td>0.072</td>
<td>70.1 (15.4)</td>
<td>70.3 (13.7)</td>
<td>0.7 (–2.3, 3.7), p = 0.66</td>
</tr>
<tr>
<td>Falls prevention</td>
<td>0.234</td>
<td>89 (47.3)</td>
<td>89 (47.3)</td>
<td>Odds ratio (95%CI)*</td>
</tr>
<tr>
<td>Number (%) getting all correct</td>
<td>0.48 (0.21, 1.10), p = 0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 ICC, intraclass correlation coefficient; *, missing values

Regression coefficients and odds ratios compare intervention group children taught a particular Risk Watch topic with control group children.

* adjusted for stratum (deprivation), age, gender and baseline knowledge score

www.injuryprevention.com
It has been found to be effective in increasing some aspects of children's safety knowledge and skills. Primary schools should therefore consider delivering the Risk Watch program as part of their safety education curriculum. Evaluations with a longer implementation and follow-up period and on a larger scale are required to examine duration of effect, the effect of building upon previous years of delivering the Risk Watch program and impact on child injury rates. Further research is required to examine potential explanations for the greater effect amongst particular groups of children.

It is important to remember that safety education can only ever form part of a comprehensive injury prevention strategy. Evidence from systematic reviews demonstrates that engineering and legislative approaches are more effective in reducing injury morbidity and mortality than educational approaches, and that a combination of approaches may be the most beneficial. In view of this, policy makers should ensure that injury prevention strategies do not rely solely on educational approaches.

ACKNOWLEDGEMENTS
We would like to thank the schools and children for participating, and the members of Nottinghamshire Fire and Rescue Service who helped with delivering the baseline and follow-up questionnaires and with doing the skills assessments. We also thank Rachel Whitmore of Broxtowe and Hucknall Primary Care Trust for administrative help and data entry and Yana Vinogradova of the University of Nottingham for checking analyses.

REFERENCES

BNF for Children 2006, second annual edition

In a single resource:

- guidance on drug management of common childhood conditions
- hands-on information on prescribing, monitoring and administering medicines to children
- comprehensive guidance covering neonates to adolescents

For more information please go to bnf.org