Estimating the incidence of hospitalized injurious falls: impact of varying case definitions
S Boufous, C Finch

METHODS
Information on hospitalized injurious falls cases was obtained from the 2000–01 Inpatient Statistics Collection which covers all inpatient separations/discharges from public hospitals in New South Wales (NSW). Hospitals in NSW are required to submit details for every inpatient episode of care. In the absence of personal identification and date of injury information, some studies have simply assumed that each hospital admission corresponds to a single episode of injury, resulting in an overestimation of the true hospitalized falls incidence rate.12

RESULTS
There were 22 250 separations for injurious falls in people aged 50 years and older in NSW between the 1 July 2000 and 30 June 2001. Of these cases, 20 883 (93.9%, 95% CI 93.5 to 94.2) cases were identified, using data linkage, as incident cases of fall related hospitalizations.
When examining the impact of these approaches on the incidence of hospitalized injurious falls, the exclusion of non-acute admissions approach provided the best estimate of incidence compared to that provided by data linkage (table 1).

DISCUSSION

This is the first study to examine the validity of various approaches to identifying first hospital admissions for injurious falls. Using data linkage methods, 93.9% of hospital separations for injurious falls were found to correspond to first admissions/incident cases. A similar proportion was found in two other studies using different methods.\(^{14,15}\) In the absence of more specific variables such as a unique personal identifier and the date of injury, our results suggest that case identification approaches based on readmission/transfer variables, particularly when used in combination, may provide the most accurate identification of incident falls leading to hospitalization. However, the incidence rate of hospitalized injurious falls when using this approach was 9.4% lower than that based on data record linkage, raising questions about its utility in estimating incident cases.

According to coding guidelines, the “readmission within 28 days” variable should be used to indicate a readmission for the same problem/condition.\(^{16}\) However, it is possible that some hospitals/coders may be using this even when a previous admission is related to other injuries or health conditions. The identification method based on “day only admissions” had a very low sensitivity and is simply not suitable for estimating incident cases of hospitalized injurious falls. This is reflected in the lower incidence rate found when using this method compared to the “gold standard”.

Although the inclusion of “acute admissions only” had a low specificity, it yielded a high sensitivity and a comparable incidence rate (only 2% higher) to that resulting from the use of probabilistic data linkage. Although sensitivity is important in this context, as it is more indicative of “true” first admissions/incident cases, it is equally important to achieve a high specificity and avoid false positives, as various attributes might change between first and subsequent admissions.

The unsatisfactory validity (specificity in particular), in relation to data record linkage, of the variables readily available in most hospital datasets indicates that alternative methods to identify incident cases of injurious falls admitted to hospitals are needed. In the state of California, only first admissions for an injury are assigned an external cause which means that by selecting records with an external injury code, only incident cases are selected and multiple counting of cases is avoided.\(^{17}\) However, this method is limited when the aim is to measure hospital bed use and the economic impact of injury on the delivery of health care.

As probabilistic record linkage is far from being practical in identifying repeat admissions, the use of a unique patient identifier coupled with the date of injury remains the most valid and accurate method of identifying incident cases of injurious falls as well as other conditions.\(^{18}\) Unique patient identifiers have the potential to not only identify incident cases for various hospitalized health conditions but to also ensure the safety of patient care by enabling access to patient encounter information across the continuum of care.\(^{19}\)

Routine recording of the “date of injury” would further simplify the process of determining whether these readmissions are for the same injury or for a new injury which might have occurred at a later date. This is particularly relevant to falls in older people where more than one fall can occur in a given year.

Although efforts have been made to achieve an accurate linked dataset, data record linkage involves trade-offs between the number of false positives and false negatives and the inclusion of such cases in the final dataset is inevitable. However, previous studies have shown that probabilistic record linkage techniques, similar to those used in this study, result in high quality outcomes and that the process results in no more than a 1% error rate.\(^{20}\) This is supported by the findings of another study, which used a unique personal identifier and date of injury, and found the same proportion of incident cases of hospitalized injurious falls as our study.\(^{14}\)

In conclusion, all the approaches using variables readily available in most hospital discharge datasets to estimate incident cases of hospitalised injurious falls have relatively low specificity, raising questions about their use. This emphasizes the importance of the introduction of a unique patient identifier and the date of injury in providing a more accurate picture of incident cases of injury related hospitalizations, including those resulting from falls.

ACKNOWLEDGEMENTS

S Boufous was supported by the NSW Injury Risk Management Research Centre’s core funding provided by the NSW Department of Health, the NSW Roads and Traffic Authority, and the Motor Accidents Authority. C Finch was supported by a National Health and Medical Research Council Principal Research Fellowship. The authors wish to thank the Centre for Epidemiology and Research at the NSW Health Department for providing the data for this study.

<table>
<thead>
<tr>
<th>Case definition</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>Incidence rate* (95% CI)</th>
<th>Change in incidence†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion of readmissions within 28 day</td>
<td>91.6 (91.2 to 92.0)</td>
<td>55.8 (53.2 to 58.4)</td>
<td>1097.5 (1082.3 to 1112.8)</td>
<td>↓ 5.6%</td>
</tr>
<tr>
<td>Exclusion of transfers</td>
<td>93.9 (93.6 to 94.2)</td>
<td>53.0 (43.9 to 49.2)</td>
<td>1126.2 (1110.8 to 1141.7)</td>
<td>↓ 3.1%</td>
</tr>
<tr>
<td>Exclusion of both readmissions and transfers</td>
<td>86.8 (88.2 to 89.1)</td>
<td>68.3 (65.8 to 70.7)</td>
<td>1053.6 (1038.7 to 1068.5)</td>
<td>↓ 9.4%</td>
</tr>
<tr>
<td>Inclusion of acute admissions only</td>
<td>96.4 (96.1 to 96.6)</td>
<td>12.8 (85.4 to 89.0)</td>
<td>1185.4 (1169.6 to 1201.2)</td>
<td>↑ 2.1%</td>
</tr>
<tr>
<td>Exclusion of day only admissions</td>
<td>91.9 (89.4 to 92.5)</td>
<td>100%</td>
<td>219.5 (212.7 to 226.4)</td>
<td>↑ 62.2%</td>
</tr>
<tr>
<td>Internal data linkage</td>
<td>100%</td>
<td>100%</td>
<td>1161.4 (1145.8 to 1177.1)</td>
<td></td>
</tr>
<tr>
<td>All fall related separations</td>
<td>–</td>
<td>–</td>
<td>1237.5 (1221.3 to 1253.6)</td>
<td>↑ 6.6%</td>
</tr>
</tbody>
</table>

*Incidence rate per 100 000 people aged 50 years and over.
†Compared with the incidence obtained based on data record linkage.
REFERENCES

LETTERS

Resources for terror and road injury prevention

We question the ethics and logic underlying the thesis that a shift of resources from terror prevention and deterrence to road injury prevention is dictated by the huge differences between the relatively small death tolls from terror and the large death tolls from road injury in OECD countries.1

The follow up period (1994–2003) is cut off before the terror attacks in Madrid (191 dead) and London (52 dead), and the tolls do not include overseas deaths of OECD citizens, as in terror attacks in Bali, Egypt, and Tunisia. The boundaries exclude Israel (a member of WHO Europe and signatory to many EU agreements) where over 550 civilians were killed in terror attacks between September 2000 and January 2003.2

The study ignored the victims of the Moscow theater attack, the 300 victims of terror in Beslan, most of whom were children, and the thousands of civilian dead in Iraq from terror attacks. Genocidal terror in prosperous countries cannot be insulated from global terrorism, given the remarkable ability of its vectors—the perpetrators—to move around the global village.

In road injury prevention, the barrier to major progress in reducing death tolls is not budget, but the direction and content of prevention programs. Speed camera networks in Victoria, Australia and in the UK have reduced road death tolls by some 40–50% in the last decade, and themselves pay for their operation.1,2 By contrast, prevention of terror is cost intensive, since the results have to be failsafe.

Indeed it could well be that low death rates from terror in OECD countries are precisely a result of the massive investments in terror prevention. The bizarre logic used by the authors, would justify neglecting the upkeep and maintenance of the dykes in the Netherlands, because that country has had no floods in recent years. It would lead to the suspension of cost intensive failsafe airport and airplane security for aircraft flying to and from Israel because Israel has not experienced a hijacking since 1972. If there have been no more 9/11s in the USA, it is quite possible as a result of the costly interventions which this paper questions.

E D Richter, T Berman

Hebrew University-Hadassah School of Community Medicine and Public Health, Injury Prevention Center, Jerusalem, Israel

Correspondence to: Dr E D Richter, Hebrew University-Hadassah School of Community Medicine and Public Health, Injury Prevention Center, 91120 Jerusalem, Israel; elir@cc.huji.ac.il

doi: 10.1136/ip.2006.011577
Accepted 1 February 2006

Climate change control and injury prevention: more win-win solutions

The journal recently published an excellent special feature on climate change and injury prevention by Roberts and Hillman. The authors detailed a number of “win-win solutions” whereby actions to prevent climate change were also likely to contribute to injury prevention. However, their list was incomplete and we wish to point out some additions:

• The use of carbon charges on fossil fuels would be likely to reduce injuries for two reasons. The first is the historical evidence around petrol prices and motor vehicle fatalities;1 the second is that, if the carbon charge were not offset by other tax reductions, then it would raise revenue that could be used to invest in improved public transport systems. That would help lower injury rates, because public transport is safer than private vehicle use. The Intergovernmental Panel on Climate Change has also reported that controlling road traffic would benefit health through reductions in road traffic crashes.

• Reducing domestic hot water temperatures can prevent scalding injuries4 and also save both energy and financial resources.

• The introduction (and extension) of daylight saving schemes in many countries can save both energy and potentially reduce motor vehicle and pedestrian injury rates.5

If Western economies transmitted price incentives via carbon charges, then demand reduction, increased energy efficiency, and substitution of non-fossil fuel renewables for oil would decrease Western dependence on Middle East oil. This in turn could reduce the perceived need for military interference by Western powers in the Middle East and elsewhere, and reduce the risk of deaths and injuries from both military operations and international terrorist attacks.

Collectively, these additional “win-win solutions” may have substantive impacts on preventing injuries as well as contributing to a lowering of greenhouse gas production.

References

References

Corrections

Several errors occurred in the paper by Fingerhut and Warner in the last issue of the journal (Inj Prev 2006;12:24–9). Six cells of the IME matrix shown in Figure 1 have been changed to display the correct codes. The cells that have changed are: as follows: vertebral column and internal organ injury; multiple body regions and unspecified injury; multiple injuries and upper extremity injuries; multiple injuries and lower extremity injuries and other specified injury. The correct table is on the Injury Prevention website: http://ip.bmjournals.com/cgi/content/full/12/1/24/DC1

doi: 10.1136/ip.2006.009837.cor1

Several errors occurred in the paper by Boufous and Finch in the December 2005 issue of the journal (Inj Prev 2005;11:334–6). In Table 1 the row entitled “Exclusion of day only admission” has been changed to display the correct figures. The correct table is on the Injury Prevention website: http://ip.bmjournals.com/cgi/content/full/11/6/334/DC1

doi: 10.1136/ip.2005.009076.cor1

www.injuryprevention.com