Article Text

Download PDFPDF
Mechanical analysis of survival in falls from heights of fifty to one hundred and fifty feet
  1. Hugh De Haven1
  1. 1Research Associate, Department of Physiology, Cornell University, Medical College, New York

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    During the interval of velocity change in aircraft and automobile accidents many typical crash injuries are caused by structures and objects which can be altered in placement or design so as to modify the large number of severe and constantly recurring patterns of injury in these accidents. In order conscientiously to approach some of the engineering problems encountered in reduction of the potential injury hazards of windshield structures, seats, instrument panels, safety belts, etc, it was necessary to have some understanding of the limits of mechanical strength of the human body.

    The objective in studying the physiologic results of rapid deceleration in the following instances of extraordinary survival—after free fall and impact with relatively solid structures—was to establish a working knowledge of the force and tolerance limits of the body. On the basis of these data certain engineering improvements can be considered for aircraft and automotive design.

    Loss of pilots through injury due to the increased landing speeds of military planes has become more and more frequent; this loss and the ever present toll by accident in the automotive field are matters of grave national concern. Injuries in these fields are mechanical results stemming from localized pressures induced by force and applied to the body through the medium of structure. It is an axiom in the mechanical arts that modification of cause will change results, but the nature and the degree of structural alteration to modify injury to human beings effectively depend on the reactions of the body to abrupt pressure and its distribution. The strength of human anatomic structure and its tolerance of pressure increase are centrally important elements in any proposed increase of safety factors through engineering effort.

    Obviously, if the body could tolerate pressure within only narrow limits, few improvements would be worth consideration, since the force …

    View Full Text


    • * My interest in the mechanics of injury and safety design dates from experiences in the Royal Air Force during the last war. Observations made at that time, during investigation of air crashes, gave strong indication that many of the traumatic results of aircraft and automobile accidents could be avoided. Structures and objects, by placement and design, created an inevitable expectance of injury in even minor accidents. Occasionally, however, accidents apparently having every fatal characteristic would occur without causing physical injury. Detailed evidence of apparently miraculous survival in the instances of free fall described here, indicates the strength of the body under conditions of extreme force closely paralleling those encountered in many severe automobile and aircraft accidents.

    • This is the latest paper in a series of Injury Classics. Our goal is to reprint one or two such papers in each issue to introduce newcomers to these old, often quoted, and important contributions. As many are difficult to find, it should help all of us to have a copy at hand. Your suggestions about future articles are welcome. Write to the editor with details of your favourite, most quoted paper.

    • This paper first appeared in

      ) and is reproduced with permission. Copyright 1942 by the American Medical Association.

    Linked Articles

    • Editorial
      I B Pless