Skip to main content
Log in

Mathematical model for investigating combined seatback—head restraint performance during rear-end impact

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

A mathematical model of the seated driver subjected to a rear-end impact is developed using a lumped parameter model which,inter alia, allows for the investigation of the effect of an elastic—perfectly plastic head restraint device on the overall motion of the head and torso. The most satisfactory seatback-head restraint combination is found to be a seatback having a high rotational stiffness with a viscous damping coefficient of near ‘critical’ value combined with an energy absorbing head restraint having e plastic collapse load of approximately 890 N. The model confirms recent results which indicate that tensing of neck musculature prior to impact reduces injury potential.

Sommaire

Un modèle mathématique du conducteur assis subissant un choc à l'arrière est développé, en utilisant un modèle à paramètres localisés qui, entre autres, permet l'étude de l'effet d'un dispositif de maintien de la tête élastique et parfaitement plastique sur le mouvement global de la tête et du buste. La combinaison dossier/maintien-tête s'avère être un dossier ayant une grande rigidité rotationnelle avec un coefficient d'amortissement visqueux d'une valuer quasi-critique conugué avec un maintien-tête absorbant d'énergie dont l'effort d'effondrement plastique est environ 890 N. Le modèle confirme des résultats récents indiquant que le raidissement de la musculature du cou avant l'impact limite la blessure éventuelle.

Zusammenfassung

Unter Verwendung eines punktförmig verteilten Parametermodells wird ein mathematisches Modell des sitzenden Fahrers entwickelt, der einen Heckaufprall erleidet. Bei diesem Modell ist u.a. die Untersuchung der Wirkung einer elastischen, perfekt plastischen Kopfstütze auf die Gesamtbewegung von Kopf und Körper möglich. Es wurde festgestellt, daß die beste Kombination von Rückenlehne und Kopfstütze aus einer Rückelehne mit hoher Verdrehungssteifigkeit besteht, deren viskoser Dämpfkoeffizient fast den ‘kritischen’ Wert erreicht, verbunden mit einer kraftabsorbierenden Kopfstütze mit einer plastischen Knickbelastung von etwa 890 N. Das Modell bestätigt kürzlich erzielte Ergebnisse, die darauf schließen lassen, daß sich durch eine Spannung der Nackenmuskulatur vor dem Aufprall die Möglichkeit einer Verletzung mindert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CF :

constant collapse load of head restraint

DKS 1 :

viscous damping coefficient of seatback

D h :

initial head offset

I 1 :

moment of inertia of torso/seatback unit

I 2 :

moment of inertia of head/neck unit

L 1 :

distance between pivot point and centre of gravity of torso/seatback

L 2 :

distance between pivot point and C7

L 3 :

distance between C7 and centre of gravity of head

M 1 :

mass of torso/seatback

M 2 :

mass of head/neck

Q j :

generalised forces

SKS 1 :

stiffness of torso/seatback

SKS 2 :

stiffness of neck

SKS 3 :

stiffness of head restraint

SKS 4 :

stiffness of chin stop

T :

kinetic energy

V :

potential energy

x :

distance

\(\dot x\) :

velocity

\(\ddot x\) :

acceleration

â,000123,ĉ :

unit vectors

k h :

radius of gyration—head/neck

k t :

radius of gyration—torso/seatback

t d :

duration of impact acceleration pulse

q i :

generalised co-ordinates

θ:

angular displacement of head relative to vertical

ϕ:

angular displacement of seatback relative to vertical

References

  • Berton, R. J. (1968) Whiplash: tests of the influential variables. S.A.E. Paper No. 680080.

  • Bowman, B. M. andRobbins, D. H. (1972) Parameter study of biomechanical quantities in analytical neck models. Proc. 16th Stapp Car Crash Conf., Detroit, U.S.A., 14–44.

  • Campbell, B. J. andGriffin, L. I. (1973) Analysis of the benefits derived from presently existing motor vehicle safety devices: a review of the literature. University of North Carolina Highway Safety Research Centre Research Report.

  • Fox, J. C. (1974) The dynamics of occupant protection in automobile rear-end collisions. M.Eng.Sc. Thesis, University of Melbourne, Australia.

    Google Scholar 

  • Gurdjian, E. S., Lissner, H. R., Evans, F. G., Patrick, L. M. andHardy, W. G. (1961) Intracranial pressure and acceleration accompanying head impacts in human cadavers.Surg. Gyn. and Obst. 112, 185–190.

    Google Scholar 

  • Kihlberg, J. (1969) Flexion-torsion neck injury in rear impacts. Cornell Aeronautical Laboratory, C.A.L. Report No. VJ-2721-R-2, April.

  • Mertz, H. J. andPatrick, L. M. (1967) Investigation of kinematics and kinetics of whiplash. Proc. 11th Stapp Car Crash Conf., 175–206.

  • Mertz, H. J. andPatrick, L. M. (1971) Strength and response of the human neck. Proc. 15th Stapp Car Crash Conf., 207–255.

  • McKenzie, J. A. andWilliams, J. F. (1971) The dynamic behaviour of the head and cervical spine during whiplash.J. Biomechanics 4, (6), 447–490.

    Google Scholar 

  • Nelson, P. G. B. (1974) Chairman; Royal Australian College of Surgeons' Road Trauma Committee, Personal communication.

  • Ommaya, A. K. andHirsch, A. E. (1971) Tolerances for cerebral concussion from head impact and whiplash in primates.J. Biomechanics 4, 13–21.

    Article  Google Scholar 

  • Ommaya, A. K., Yarnell, P., Hirsch, A. E. andHarris, E. H. (1967) Scaling of experimental data on cerebral concussion in subhuman primates to concussion threshold for man. Proc. 11th Stapp Car Crash Conf., 47–52.

  • O'Neill, B., Haddon, W., Kelley, A. B. andSorenson, W. W. (1972) Automobile head restraints: Frequency of neck injury insurance clais in relation to the presence of head restraints.Am. J. Public Health 62, 399–406.

    Article  Google Scholar 

  • Roberts, S. B., Ward, C. C. andNahum, A. M. (1969) Head trauma—a parametric dynamic study.J. Biomechanics 2, 397–415.

    Article  Google Scholar 

  • Severy, D. M., Brink, H. M. andBaird, J. D. (1968) Vehicle design for passenger protection from high speed rear-end collisions. Proc. 12th Staph Car crash Conf., 94–163.

  • Severy, D. M., Brink, H. M., Baird, J. D. andBlaisdell, D. M. (1969) Safer seat designs. Proc. 13th Stapp Car Crash Conf., 314–335.

  • Severy, D. M., Mathewson, J. H. andBechtol, C. O. (1955) Controlled automobilic rear-endcollisions: an investigation of related engineering and medical phenomena. Medical Aspects of Traffic Accidents, Proc. Montreal Conf., 152–184.

  • States, J. D. andBalcerak, J. C. (1973) The effectiveness of head restraints in rear end impacts. University of Rochester, School of Medicine Research Report, N.Y.

  • Thomas, L. M., Roberts, V. L. andGurdjian, E. S. (1967) Impact induced pressure gradients along three orthogonal axes in the human skull.J. Neurosurg. 26, 316–321.

    Article  Google Scholar 

  • Vulcan, A. P. andKing, A. I. (1971) Forces and moments sustained by the lower vertebral column during seat-to-head acceleration. In: Dynamic response of biomechenical systems, ASME, New York, 84–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J.C., Williams, J.F. Mathematical model for investigating combined seatback—head restraint performance during rear-end impact. Med. & biol. Engng. 14, 263–273 (1976). https://doi.org/10.1007/BF02478120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478120

Keywords

Navigation