Car seatbelt use during pregnancy in Japan: determinants and policy implications

M Ichikawa, S Nakahara, T Okubo, S Wakai

Context: Pregnant women are exempted from the current seatbelt legislation in Japan despite the fact that seatbelt use is essential to reduce the risk of fatalities for these women and their fetuses in car crashes.

Objective: To examine factors that might influence seatbelt use during pregnancy.

Methods: A cross-sectional study, with data collected via an anonymous, self-administered questionnaire at obstetric clinics in suburban areas of Japan. Altogether 880 pregnant women receiving prenatal care in July 2001 were recruited. The relative effects of factors that might influence seatbelt use during pregnancy were estimated using logistic regression analysis.

Results: Almost 70%–80% of pregnant women were consistent seatbelt wearers before pregnancy but seatbelt compliance was reduced by about half at 20 weeks or more gestation. Only 20% had received information on maternal seatbelt use, with one third reporting that seatbelt use is beneficial during pregnancy. Those who perceived that maternal seatbelt use is beneficial tended to maintain use, but daily car users and those who knew that they were exempted from seatbelt legislation were more likely to reduce use.

Conclusions: Knowledge of the legislative exemption for pregnant women, misunderstanding of the benefits, and daily car use contributed to the reduction in seatbelt use after pregnancy.

Table 1

<table>
<thead>
<tr>
<th>Location/seatbelt use</th>
<th><20 weeks Before</th>
<th>Current</th>
<th>20–29 weeks Before</th>
<th>Current</th>
<th>30 weeks + Before</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver’s seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>172 (62.3)</td>
<td>129 (62.3)</td>
<td>211 (63.4)</td>
<td>127 (51.4)</td>
<td>229 (78.4)</td>
<td>108 (37.9)</td>
</tr>
<tr>
<td>Often</td>
<td>14 (6.7)</td>
<td>22 (10.6)</td>
<td>17 (6.7)</td>
<td>30 (12.1)</td>
<td>31 (10.6)</td>
<td>32 (11.2)</td>
</tr>
<tr>
<td>Sometimes</td>
<td>19 (6.9)</td>
<td>34 (16.4)</td>
<td>22 (8.7)</td>
<td>42 (17.0)</td>
<td>29 (9.9)</td>
<td>58 (20.4)</td>
</tr>
<tr>
<td>Never</td>
<td>4 (1.9)</td>
<td>22 (10.6)</td>
<td>3 (1.2)</td>
<td>48 (19.4)</td>
<td>3 (1.0)</td>
<td>87 (30.5)</td>
</tr>
<tr>
<td>Front passenger’s seat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>164 (76.3)</td>
<td>118 (55.1)</td>
<td>190 (72.0)</td>
<td>108 (41.4)</td>
<td>208 (67.3)</td>
<td>89 (29.2)</td>
</tr>
<tr>
<td>Often</td>
<td>19 (8.8)</td>
<td>35 (16.4)</td>
<td>24 (9.1)</td>
<td>36 (13.8)</td>
<td>45 (14.6)</td>
<td>26 (8.5)</td>
</tr>
<tr>
<td>Sometimes</td>
<td>25 (11.6)</td>
<td>33 (15.4)</td>
<td>41 (15.5)</td>
<td>57 (21.8)</td>
<td>42 (13.6)</td>
<td>81 (26.6)</td>
</tr>
<tr>
<td>Never</td>
<td>7 (3.3)</td>
<td>28 (13.1)</td>
<td>9 (3.4)</td>
<td>60 (23.0)</td>
<td>14 (4.3)</td>
<td>109 (35.7)</td>
</tr>
</tbody>
</table>

*Total number (in driver’s seat) is not equal to the number of pregnant women (with driver’s license) due to missing data.
†Seatbelt use before pregnancy was not significantly different across gestation periods, whereas the difference in current use was significant across gestation periods.
Mito has 14 obstetric clinics and four hospitals with obstetricians. Of these facilities, three are located in the west, four in the south, five in the east, and six in the central division of the city. The charge for prenatal care is standardized at 6150 yen (approximately US$850). The local government subsidizes prenatal care at any facility they attend. Medical costs associated with the delivery are almost completely subsidized under the health insurance scheme that covers the entire population.

We invited all the obstetric clinics and hospitals in the study site to participate. Two hospitals and seven clinics agreed, two hospitals and six clinics declined, and one clinic had no clients during the study period. Of the nine collaborating facilities, at least two covered each division of the city. At these facilities, pregnant women who received prenatal care in July 2001 were invited to participate in the study. Those unable to read Japanese and emergency cases were excluded.

A self-administered questionnaire with an explanation of the aim of the study was given to pregnant women at the facilities’ reception. They were asked to complete it by themselves while waiting for their consultation with the obstetrician. Duplicate responses were avoided as we focused on those who received prenatal care and gave a questionnaire only once before a consultation. Of the 893 pregnant women invited, 880 responded (response rate 98.5%).

The average age of respondents was 28.9 years (SD 4.6) with a mean gestation period of 25.5 weeks (SD 9.0). Altogether 436 (50.5%) were primigravida, 842 (95.7%) had a driver’s license, 319 (40.9%) reported daily car use, and 582 (73.7%) were primigravida, 842 (95.7%) had a driver’s license, 319 (40.9%) reported daily car use, and 582 (73.7%) used seatbelts. There was no significant difference in seatbelt use before pregnancy across gestation periods. Conversely, current seatbelt use was significantly different across gestation periods. Consistent (“always”) driver seatbelt users were found among 62.3% at less than 20 weeks’ gestation but was significantly lower at 20–29 weeks (51.4%) and 30 weeks or more (37.9%). Correspondingly, the no (“never”) seatbelt use rate increased. A similar trend was found for front passenger use across gestation periods. When using the rear seat, however, a majority never used seatbelts before pregnancy (74.9%) or during pregnancy (80.9%) (data not shown).

Table 2 shows the proportion whose current seatbelt use was lower than before the pregnancy. Seatbelt use was reduced at all periods of gestation, but the reduction became greater as gestation increased. For both drivers and front passengers, about half of the pregnant women at gestation period of 20 weeks or above stated that their seatbelt use at present was less frequent than before pregnancy.

As potential determinants for seatbelt use during pregnancy, we considered age, gestation period, gravidity, daily car use, knowledge of the legislative exemption, perception, and information acquisition. Although education and socioeconomic status are known to influence seatbelt use, these questions are deemed sensitive in Japan. To obtain cooperation from the facilities for data collection, we had to refrain from requesting such personal information from the respondents.

We estimated the contribution of these factors to changes in seatbelt use after pregnancy (reduced seatbelt use compared with maintained or increased seatbelt use) using logistic regression analysis, and estimated crude and adjusted odds ratio and 95% confidence intervals for drivers and front passengers separately.

To obtain informed consent, we explained the aim of the study and requested voluntary participation. No information that would have identified the respondents was requested. Moreover, data were independently compiled by the collaborating clinics and hospitals thus guaranteeing anonymity.

RESULTS

Table 1 shows self-reported seatbelt use before pregnancy and current use of drivers and front seat passengers by gestation period. Before pregnancy, 80.0% of drivers and 69.4% always used seatbelts. There was no significant difference in seatbelt use before pregnancy across gestation periods. Conversely, current seatbelt use was significantly different across gestation periods. Consistent (“always”) driver seatbelt users were found among 62.3% at less than 20 weeks’ gestation but was significantly lower at 20–29 weeks (51.4%) and 30 weeks or more (37.9%). Correspondingly, the no (“never”) seatbelt use rate increased. A similar trend was found for front passenger use across gestation periods. When using the rear seat, however, a majority never used seatbelts before pregnancy (74.9%) or during pregnancy (80.9%) (data not shown).

Table 2 shows the proportion whose current seatbelt use was lower than before the pregnancy. Seatbelt use was reduced at all periods of gestation, but the reduction became larger as gestation increased. For both drivers and front passengers, about half of the pregnant women at gestation period of 20 weeks or above stated that their seatbelt use at present was less frequent than before pregnancy.

Those who reduced seatbelt use after pregnancy reported that discomfort and fear of adverse effects on the fetus deterred them from use. They also relied on the legislative exemption.

Six hundred and twenty five (74.0%) knew that seatbelt use was not compulsory during pregnancy but 295 (33.6%) reported that discomfort and fear of adverse effects on the fetus deterred them from use.
reported that use is beneficial during pregnancy. A total of 172 (20.0%) had received information on seatbelt use during pregnancy and 203 (23.4%) had received information on child seat use. Maternity and car magazines, newspapers, and friends were cited as information sources. However, no respondent mentioned obstetricians or any other healthcare personnel.

Table 3 shows the relative effects of factors influencing changes in seatbelt use by seating position. Pregnant women who were not seatbelt users during pregnancy were 55% more likely to drive without a seatbelt after pregnancy. This trend was contrary to the finding in California that seatbelt compliance significantly increased during pregnancy (79% before pregnancy v 86% during pregnancy). This study had a high response rate among those at the collaborating facilities, but half of the clinics and hospitals we invited did not participate. However, collaborating facilities covered most of the city, so any geographic bias should have been mitigated. If, however, pregnant women at the non-participating facilities differed regarding sociodemographic characteristics, we would have missed this subgroup of expectant mothers whose seatbelt compliance could be low. If this were the case, seatbelt use might have been overestimated in this study.

Respondents who declined to use seatbelts mainly claimed discomfort and their fear of harming the fetus. These concerns have also been found among pregnant women who rarely or never used seatbelts. If concerns associated with the gestation period dissuade maternal seatbelt use, then gestation period would be a major determinant for non-restraint use during pregnancy as we found. However, a recent study in the United States reported that trimester status has relatively little effect on seatbelt use. This implies that gestation related factors cannot reasonably explain the difference in maternal seatbelt use between Japan and other industrialized countries. It is unrealistic to assume that pregnant Japanese women were more likely to have such complaints and not wear seatbelts than their foreign counterparts.

It is interesting to note that seatbelt use was consistently higher among drivers than front seat passengers. Since front seat passengers are less likely to wear seatbelts than drivers among the general population (88.1% for drivers v 75.2% for front seat passengers), it is possible that the same trend would be seen in pregnant women. However, if discomfort is the main reason for reduced seatbelt use, then the reduction after pregnancy should have been greater for drivers.

Discrepancies in seatbelt compliance during pregnancy between Japan and other industrialized countries could be due to differences in laws requiring seatbelt use, and public awareness of it. A large majority of the respondents in studies in the United Kingdom and the United States, where pregnant women are encouraged to continue wearing seatbelts, reported that seatbelt use is beneficial for both pregnant women and their fetuses. In contrast, only one third of our respondents acknowledged this. To promote maternal seatbelt use and help increase awareness of its importance, it is essential that the exemption be withdrawn. Seatbelt use was less among pregnant women who knew of the current exemption. In our respondents, the importance of seatbelt use during pregnancy was not well recognized. This may partly be attributable to the fact that only one in five had acquired information on this topic, mainly from magazines. None reported that their obstetricians had given this information perhaps because Japanese obstetrics textbooks do not address this issue.

Prenatal care offers a good educational opportunity and obstetricians should be encouraged to advise that seatbelt use continue throughout pregnancy. Indeed, in other industrialized countries, obstetricians take an important role in disseminating maternal seatbelt use information and pregnant women who reported receiving this information were more likely to wear seatbelts and do it correctly. Daily car users were less likely to wear seatbelts despite their longer exposure to the risk of traffic injuries. This suggests that frequent car use may lower risk perception.

This study had a high response rate among those at the collaborating facilities, but half of the clinics and hospitals we invited did not participate. However, collaborating facilities covered most of the city, so any geographic bias should have been mitigated. If, however, pregnant women at the non-participating facilities differed regarding sociodemographic characteristics such as income or education that might be related to seatbelt use this could bias the results. Such differences between facilities may not be relevant because prenatal care is equally subsidized at all facilities, thus income would not restrict respondents to particular prenatal clinics.

As we could not obtain sociodemographic information we cannot determine how similar our participants are to the general population of women of childbearing age. Moreover, if a substantial number of women refused to attend prenatal clinics, we would have missed this subgroup of expectant mothers whose seatbelt compliance could be low. If this were the case, seatbelt use might have been overestimated in this study.

Reporting bias could also have occurred because actual practices were not observed. Previous studies found discrepancies between observed and self-reports of seatbelt use, although a recent study suggests better agreement between observations and self-reports. Reporting bias should be more evident among those with low seatbelt use but in this study this would have little effect because seatbelt use rate was relatively high. Moreover, the observed rate of seatbelt wearers among the general population in Mito is close to self report levels (“always” and “often”) before pregnancy among our respondents (89.7% v 88.7% for drivers, 79.7% v 80.9% for front seat passengers). Finally, the anonymous questionnaire should have minimized this bias. Because we examined changes in seatbelt use after pregnancy, over-reporting should not have greatly biased our analyses.

We did not examine whether pregnant women wear seatbelts correctly, and it is likely that incorrect use is similar to that reported elsewhere. This is alarming because...
incorrect seatbelt use could cause adverse effects on pregnant women and their fetuses in the event of a car crash. To promote maternal seatbelt use, expectant mothers should not be exempted from seatbelt legislation. Education on traffic safety for pregnant women, where they can learn the benefits of proper seatbelt use and the importance of infant restraint devices, may prove useful. Medical professionals should be more involved in educating future mothers on this topic.

ACKNOWLEDGEMENTS

We thank all the participants and collaborating facilities in Mito City, Ibaraki Prefecture and also thank Mr Shuichi Kotoku and Ms Ayano Miyagawa for data management.

Authors’ affiliations

M Ichikawa, S Nakahara, S Wakai, Department of Community Health, School of International Health, Graduate School of Medicine, University of Tokyo, Japan

T Okubo, Okubo Hospital, Ibaraki Prefecture, Japan

REFERENCES

Car seatbelt use during pregnancy in Japan: determinants and policy implications

M Ichikawa, S Nakahara, T Okubo and S Wakai

Inj Prev 2003 9: 169-172
doi: 10.1136/ip.9.2.169

Updated information and services can be found at:
http://injuryprevention.bmj.com/content/9/2/169

These include:

References
This article cites 25 articles, 2 of which you can access for free at:
http://injuryprevention.bmj.com/content/9/2/169#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Epidemiologic studies (842)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/