Productivity losses from injury in China

Y Zhou, T D Baker, K Rao, G Li

Objective: To examine the productivity losses and costs of injury and disease in China using an improved approach.

Methods: Potentially productive years of life lost (PPYLL) were calculated for injury and four major disease groups [respiratory, cardiovascular, infectious, neoplastic].

Results: Injuries caused an annual PPYLL of 12.6 million years, more than for any disease group. The estimated annual economic cost of injury is equivalent to US$12.5 billion, almost four times the total public health services budget of China. Motor vehicle fatalities accounted for 25% of the total PPYLL from all injury deaths.

Conclusion: Injury control and prevention programs merit priority to reflect the social and economic burden of injury in China.

Injury has emerged as an important public health problem in China.1 According to China’s National Center for Health Information and Statistics,2 injury is the leading cause of death for children and adults ages 1 to 44 years and the fifth leading cause of death overall. With motor vehicle production tripling in the past decade, motor vehicle crashes have become the number one cause of injury mortality in China, followed by suicide and drowning.3 It is estimated that each year in China, injury claims about 750,000 lives and results in 3.5 million hospitalizations.4 Despite the importance of injury as a public health problem in China, little resource has been deployed to support injury prevention and control programs.

The concept of potentially productive years of life lost (PPYLL) is based on the productive value of individuals. The history of estimating human capital, the value of human life, goes back for centuries. One of the first references is in the Bible, book of Leviticus (chapter 27, verses 3–7), which sets the value of men and women of working age, children, and the elderly at different levels. Key references from the past include Political Arithmetick by Sir William Petty, The Money Value of a Man by Louis Dublin,6 and Estimating the Cost of Illness by Dorothy Rice.7

In 1982, the US Centers for Disease Control introduced the concept of years of potential life lost (YPLL) (0–64).8 YPLL has been used by the Pan American Health Organization9 and in several studies in China.10 The World Health Organization has developed a complex method for estimating disability adjusted years of life lost, or DALYs, based in part on the assumption that everyone should have the life expectancy of Japanese females.11 The appropriateness of using quality adjusted life years (QALYs) for resource allocation, however, has been questioned.12 While DALYs measure the potential impact of a health problem on the quality of life of individuals, PPYLL provides more relevant information about the effect of a medical condition on the economy.

Using data recently available from the Ministry of Health and an improved technique PPYLL to measure the economic burden of health problems, this study compares the PPYLL from injuries with four major disease groups.

The measure, PPYLL (age 15–64), underscores the importance of productivity as a vital part of a country’s development. We choose this method in preference to DALYs, which include the years lost well beyond the productive years.13 Setting priorities for health expenditure for disease control programs should reflect the economic costs (direct and indirect) of the disease. It should also reflect the different costs of competing health programs. This article deals only with the productivity loss of injury and illness. We hope that the results of this study will lead to a more balanced health agenda in China, with adequate investment in research, training, and intervention programs aimed at reducing the mortality and morbidity from injuries.

METHODS

Sources of data

Data came from current Chinese language sources. The 1999 mortality data by age, sex, rural/urban location, and cause (injury and major disease groups) came from China’s National Center for Health Information and Statistics, Ministry of Public Health.13 This source is based on a geographically representative sample of 36 cities and 85 rural counties. The urban sample included large cities with more than one million non-agricultural population, as well as medium and small cities with less than 300,000 non-agricultural population. The rural sample consisted of counties at various levels of economic development.

Morbidity data came from the 1998 report of the Second National Health Services Survey, which was based on a representative sample of 210,000 individuals from 57,000 households in 1997.14 Self-reported workdays lost in the previous two weeks from cause-specific acute morbidity were used to compute morbidity-attributed PPYLL.

Estimates of the 0–64 population were based on the latest (1996) population projection in the United Nations Demographic Yearbook.15 We expanded the final 1996 population by 3% to reflect the increase of population from 1996 to 1999.16

Mortality data from the earlier years’ World Health Organization Statistics Annuals were used to calculate PPYLL by age, gender, rural/urban location, and cause in 1987 and 1992 to show time trends.17 18

Direct costs of injury data came from the Second National Health Services Survey. Data for average annual earnings came from China Statistics Yearbook.19

Abbreviations: DALYs, disability adjusted years of life lost; PPYLL, potentially productive years of life lost; QALYs, quality adjusted life years; YPLL, years of potential life lost

See end of article for authors’ affiliations

Correspondence to:
Professor Timothy D Baker,
Johns Hopkins University
Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA.
tbaker@jhsph.edu
The World Bank and World Health Organization also use a 3% discount rate.

The PPYLL method assumes that productive ages are from age 15–64. (The working age span can be changed if it is inappropriate for a given country.) For deaths before age 15, it is assumed that if the children had survived, they would have worked the full 50 years (15–64). The loss of potentially productive years of life for children is discounted back to the midpoint of their age group. PPYLL does not take into account the factor of competing causes of death.

Recognizing the economic principle that years in the future are worth less than years in the present, the PPYLL method applies a 3% discount rate, compounded, for years of life in the future lost to premature death. The World Bank and World Health Organization also use a 3% discount rate. The method calculates future years lost from deaths in each 10 year age group from the midpoint of that period. Rather than giving a formula, an example is more easily understood. For example, deaths in the 15–24 year age group would result in an average of 45 lost years of productive work. Discounted by a compounded annual 3%, this would be about 25 years lost. Deaths in the 55–65 years age group would result in an average loss of 5 years (discounted = 4.6 years). Table 1 gives the discounted years of productivity loss by age groups. The total loss of productive years is the sum of all age groups. We expanded the years lost from the sample of deaths to years lost by the total Chinese population of 1999 by multiplying the age specific mortality rates of the sample by the total population of each 10 year age group from 0–64 years.

In addition to the years lost in the future from premature mortality, there are current morbidity losses. Losses of current productivity were based on the days of work lost per 1000 population from injury or disease applied to the total working-age population of China. To convert days lost to years lost, we divided the days lost by 260, the estimated work days per year. We calculated PPYLL separately for injury and four other disease groups.

To estimate the losses due to different types of injury (falls, drowning, etc.), we used only premature mortality, because morbidity data by type of injury were not available.

Analysis of PPYLL from premature death by type of injury showed that traffic related injuries were the major source of lost productivity due to injury (fig 2). In 1999, traffic related injury deaths resulted in 250 PPYLL/100 000 population, followed by suicide (230 PPYLL/100 000), drowning (130 PPYLL/100 000), poisoning (45 PPYLL/100 000), and falls (45 PPYLL/100 000). Together, these types of injuries accounted for 80% of all injury death-attributed PPYLL. Motor vehicle crashes caused 25% of total productive years lost from all injuries.

Time trends, rural/urban, and gender differences

Rates of PPYLL/100 000 population permitted comparisons of gender, temporal, and rural/urban differences. PPYLL/100 000 lost from motor vehicle crashes and other transport injury increased from 1987 to 1999 (fig 3). Rural populations had a greater increase (80%) as well as higher PPYLL rates initially. As expected, male rates were higher than female rates for essentially all ages and all causes of injury (fig 3).

Figure 4 displays divergent age specific death rate patterns, with drowning primarily affecting children and motor vehicle injury primarily affecting young adults.

Cost of injury

The total annual cost of injury among 0–64 age groups was calculated to be US$12.5 billion in 1999. Of the total cost,
and direct costs are drawn from a large, presumably representative sample. But given the tremendous geographic and socioeconomic diversity in China, sampling bias may be inevitable. Due to the lack of detailed disability data by injury and disease groups, we were not able to calculate the PPYLL, direct and indirect costs caused by disability. Therefore, the productivity and economic loss of injury and other disease groups are somewhat under-estimated.

The findings have major implications for relevant government agencies and international organizations such as the World Bank and the World Health Organization. The opportunity for enhanced productivity should give priority for appropriate injury prevention programs. The divergent age patterns of different types of injury indicate that injury control programs should be age appropriate. For instance, drowning prevention should target children and traffic safety programs should emphasize adults.

The excessive PPYLL from motor vehicle crashes in rural areas will worsen the already lower rural health status and hinder economic development in rural areas. Further research is needed to identify risk factors for traffic-related injuries among rural residents. It is unclear how much the hazardous environment conditions and poorly maintained vehicles have contributed to the high PPYLL rates in rural areas. Farmers who migrate to cities for seasonal jobs may also be exposed to heightened risk of injury when navigating the often chaotic, unfriendly traffic and unfamiliar road environment of the urban areas.

Research is also needed to develop cost effective intervention programs. Although the magnitude of the injury problem is increasingly recognized by health authorities in China, little research has been done there on injury prevention programs such as use of seatbelts by motor vehicle occupants, and safety helmets by bicyclists, motorcyclists, and moped riders. These programs have been implemented in many developed and some less developed countries and have proved effective.

China started a national poison control center in 2000 to provide technical support for treating poisoning cases. The newly established Chinese Center for Disease Control should consider establishing a center devoted to the control and prevention of injuries. One of the injury control and prevention center’s responsibilities should be to coordinate the health sector and other sectors in formulating and implementing strategic plans for reducing the tremendous burden of injury.
Productivity losses from injury in China
