Death and injury from motor vehicle crashes: a public health failure, not an achievement

E D Richter, P Barach, E Ben-Michael, T Berman

In 1999, the Centers for Disease Control (CDC), the United States government’s leading agency in public health, published a document entitled Motor Vehicle Safety: A 20th Public Health Achievement. We suggest, however, that the record shows a failure, not an achievement.

The document claims that systematic motor vehicle safety efforts, which began in the United States in the 1960s, were responsible for the enormous reduction in the risks for deaths from road injury. This claim is accompanied by a graph that shows the steady drop in death per vehicle miles traveled (D/VMT) from 18/100 million in 1925 to 1.7/100 million in 1997, a 90% decrease (fig 1). The document emphasizes that this drop occurred despite a 10-fold increase in miles traveled, a sixfold increase in the number of drivers, and an 11-fold increase in the number of motor vehicles. What, then, is wrong with the CDC’s conclusions?

In 1998, the absolute number of road deaths in the United States was 41,471 but since 1991 there have been no drops in the absolute number of road deaths/year, and between 1992–98 the D/VMT fell only slightly, from 1.7 to 1.6. Large drops in D/VMT in earlier decades should not divert attention from the subsequent failure to reduce deaths in absolute numbers.

Box 1: Countermeasures
- Increased mass/volume.
- Better seat belt designs/child restraints.
- Improved fireproofing of fuel tanks.
- Seat belt laws.
- Burstproof latches.
- Collapsible steering wheels.
- Shatterproof window panes.
- Padded dashboards.
- Non-protrusive accessories.
- Reinforced passenger cabins.
- Rear underride absorbers for trucks.
- Energy absorbing fixtures.
- Airbags.
- Drink driving legislation.
- Truck safety standards.
- Updated road design standards.
- Congestion, lower speeds, and risk.

Congestion, lower speeds, and risk
The CDC document ignores the fact that drops in D/VMT have been occurring worldwide, since the 1920s. Worldwide, the inverse relationship between increase in VMT and decrease in D/VMT is shown by cross sectional as well as longitudinal studies. Emptyer roads have higher case fatality rates and D/VMT (Netherlands); cities with lower rates of car ownership have higher death risks/vehicle and case fatality rates (Israel); and there is a strong inverse relationship between D/VMT and population density and road congestion.

Some 75% of the drop in D/VMT preceded the late 1960s, when following Ralph Nader, the federal government first began to set standards for a highly effective set of pre-crash and crash phase countermeasures (see box 1). The fact that D/VMT varies inversely with increased VMT in cross sectional as well as longitudinal comparisons undermines the hypothesis that global time trends in introducing countermeasures are the major explanation for the decrease in D/VMT over time. There is a need to identify factors other than countermeasures in contributing to this fall.
We believe the universality of the strong inverse association between risk and exposure is mainly due to increases in traffic congestion. Everywhere, in the United States, Europe, and the major megacities of Asia, Latin America, and Africa, most of the increase in VMT and congestion occurs in and around large cities and their surrounding areas during rush hours. These are periods when mean and maximum traffic speeds approach standstill, and case fatality falls, as does D/VMT—without the help of any public health policy or countermeasures. Much of the credit for the public health “achievement” comes from the failure to provide rapid travel during peak hours of use for most vehicles. Thus VMT is massively inflated. No one gets killed in a traffic jam.

In road injury epidemiology, kinetic energy is the pathogen, and risk for injury and severity are predicted by the combined effect of mass and speed derived from Newtonian laws of motion and energy. Crash, injury, and death tolls rise in proportion to the first, second, and fourth power respectively of the ratio of increase in average speeds of travel. A 10% increase in travel speeds produces a 43% rise in case fatality. Case fatality—the probability of death—among occupants of light vehicles colliding with heavy vehicles is extremely high. These empirically validated relationships mean that small increases in speed translate into large increases in deaths. We affirm that in recent years in the United States the fall in baseline risks with increased congestion has concealed the full contribution of raised speed limits and travel speeds to increasing deaths.

The soccer field is tilted downwards
Because the trend for risk in D/VMT is falling, use of D/VMT to “correct for” increases in exposure conceals trends revealing increases in absolute numbers of deaths. It follows that before-after studies based on correction for exposure, when using a time window of several years, are analogous to playing on a soccer field tilted downward. When the players kick the ball downward we overestimate the effectiveness of the kick. Because the background risk of D/VMT is tilted downwards as a result of congestion, we make the same mistake in estimation if we use this parameter alone to monitor “progress” in reducing road deaths.

From 1988 to 1992, D/VMT fell 26%—from 2.3 to 1.7, or, 5% per year. But from 1992 to 1998, the D/VMT only fell by 6%—from 1.7 to 1.6—that is, less than 1% per year, despite a 39% reduction in alcohol related deaths since 1982. The CDC graph (fig 1) shows a drop in the risk for D/VMT—8% to 10% per decade since 1925, or 1.3% per year, although the drops were much larger in absolute terms.

Forgetting speed
What has offset the effects of countermeasures in lowering road deaths? If the death toll in the United States is in the range of 40 000 victims per year, a downward tilt in D/VMT of some 1.3% per year would conceal an increase in death tolls of some 520 persons per year. How appropriate is the use of a parameter to monitor “progress” if it buries—both literally and figuratively—such a large increase in deaths?

Both the CDC, as well as the review by Rivara et al, ignore the contribution of reduced speed limits and new systems for speed control in producing immediate, large and sustained reductions in deaths and injuries, and, of course, the reverse. Two decades of research have made the case for a direct cause-effect relationship between lower speed limits and reduced death tolls. These were seen first during the energy crisis in the 1970s, documented in a classic United States government study, not cited in the CDC document, and later work in Sweden. Higher death tolls followed higher speed limits in the 1980s and 1990s, whereas recently lower death tolls in the United Kingdom followed the introduction of speed cameras. Thus, we suggest that higher speed limits and travel speeds are the most plausible explanation for the fact that deaths are no longer declining in the United States. The United States Department of Transportation has estimated that speed associated crashes account for 8710 (21%) of the 41 474 road deaths in 1998. Risk assessments from Germany have determined that a nationwide policy of speed control would prevent some 2000 (22%) of the 9000 road deaths in that country each year (German Society for Environmental Medicine, Position Paper 1997; R Frentzel-Beyme, personal correspondence, 1998). Yet, the word “speed” does not appear even once in the CDC document.

How can we estimate the effect of measures that result in increased speed of vehicle travel? In our view, their impacts, in both the literal and figurative sense, can best be measured by tracking trends in the case fatality rate—the risk of death among all those injured. Case fatality is independent of exposure—VMT—and specifically measures the impact of crash phase events. The case fatality rate (deaths/1000 vehicles) in 1988 was 13.6/1000, fell to 12.4 in 1992, but then rose to 13.1 in 1998.

Calculations based on before-after comparisons of case fatality give a direct measure of deaths from changes in speed of impact, using the equation in the box below (CFR = case fatality rate).

\[
\Delta \text{deaths (n) from } \Delta V \text{ (impact)} = \text{deaths (before)} \times \left(\frac{\text{CFR(after)}}{\text{CFR(before)}} \right)
\]
increases in speed of impact in 1998 compared to 1992, despite improved countermeasures. These figures, and the estimate above that "correcting for exposure" conceals some 520 deaths/year suggest that the estimate of Farmer et al of 400–500 additional deaths per year from increased speed limits in the United States may less than a quarter of the true number. Indeed, Farmer’s data show that a rise in deaths on roads other than interstates was actually reversed when “corrected for” increased VMT.

We have used time trends in case fatality to track the long term effects on road deaths after increased speed limits. These effects are concealed by countermeasures and congestion.

We have also used models based on kilometers traveled, increased speeds, speed spillover, and case fatality to predict the number of deaths expected from building new high speed roads.

Vision Zero: reducing the number, not only the rate

Sweden has announced a policy of Vision Zero for road deaths. This policy declares that a target of no road deaths should be the ethical norm and ultimate goal of transport policy. The World Health Organization–Europe and the British government have set a target of reductions of 30% and 40% respectively in road deaths for the next decade. For the United States, a target of 40% reduction means less than 24,000 deaths/year.

A rapid reduction by 50% is already achievable. Since 1990, Victoria, Australia, has reduced deaths by approximately one half through the introduction of a province-wide network of speed cameras. In the United Kingdom there has been a reduction by 40% in deaths in the last decade attributed to speed cameras. These networks are sustainable because their revenues make them self-financing.

Deaths, D/VMT, and the ethics of injury epidemiology

In recent years, there are some 1,000,000 road deaths per year worldwide. How do we measure progress in preventing deaths from transport? The use of D/VMT as the criterion implicitly endorses an ethically problematic paradigm that weighs the benefits of transportation—time saved—against the losses—deaths and injuries. If we use absolute numbers, we hold that individuals should not be sacrificed for collective benefits. It follows that to protect public health, we need comparisons of risks for deaths/person-mile or deaths/ton-mile from alternative modes of transport, and not merely D/VMT from a single mode. The use of time trends in D/VMT within one mode of travel precludes examining alternative strategies based on shifts to public transport, a mode usually with much lower risks. The use of D/VMT rather than numbers of dead as a measure of progress conceals a public health failure in injury prevention.

28 British Road Federation (http://www.brf.co.uk).
Death and injury from motor vehicle crashes: a public health failure, not an achievement

E D Richter, P Barach, E Ben-Michael and T Berman

Inj Prev 2001 7: 176-178
doi: 10.1136/ip.7.3.176

Updated information and services can be found at:
http://injuryprevention.bmj.com/content/7/3/176

This article cites 12 articles, 3 of which you can access for free at:
http://injuryprevention.bmj.com/content/7/3/176#BIBL

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Articles on similar topics can be found in the following collections

Epidemiologic studies (842)

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/