Do safety practices differ between responders and non-responders to a safety questionnaire?

D Kendrick, R Hapgood, P Marsh

Abstract

Objective—To compare reported safety practices between responders and non-responders to a safety survey.

Design—Cross sectional survey at baseline compared with safety practices reported at subsequent child health surveillance checks.

Subjects—Parents of children aged 3–12 months registered with practices participating in a controlled trial of injury prevention in primary care that did, and did not, respond to the baseline survey and who subsequently attended child health surveillance checks.

Results—No difference in safety practices was found between responders and non-responders to the survey at the 6–9 month check. Responders were more likely to report owning a stair gate (odds ratio (OR) 2.75, 95% confidence interval (CI) 1.82 to 4.41) and socket covers (OR 2.16, 95% CI 1.53 to 3.04) at the 12–15 month check, and owning socket covers (OR 2.19, 95% CI 1.34 to 3.61) at the 18–24 month check. Responders were more likely to report owning greater than the median number of safety practices at the 18 month check.

Conclusions—Non-responders to a safety survey appear to be less likely to report owning several items of safety equipment than responders. Further work is needed to confirm these findings. Extrapolating the results of safety surveys to the population as a whole may lead to over estimation of safety equipment possession.

Keywords: safety practice; respondent; data collection; bias

Method

A postal questionnaire was sent in July 1995 to all parents of children aged 3–12 months registered with 36 practices in areas ranging from the deprived to the affluent in Nottingham. The questionnaire, which was tested for reliability, was sent before the interventions commenced. It included sections on safety equipment and safety practices, perceptions of risk of injury and of hazards, knowledge and confidence in dealing with first aid, socio-demographic characteristics, and history of previous injury.

Parents attending routine child health surveillance (CHS) checks at 6–9 and 18–24 months with the health visitor, and at 12–15 months with the practice nurse were asked to complete a carbonated checklist asking about possession of safety equipment and safety practices. The checklist was then used as the basis of the safety advice given by the health visitor or practice nurse as part of the trial intervention. All intervention group parents, regardless of their response to the postal questionnaire, were eligible to receive the study interventions including safety advice at CHS contacts, home safety checks, low cost equipment (for those receiving means tested benefits), and first aid training. Fewer parents received advice at the 6–9 month and 12–15 month checks than the 18–24 month check as some children participating in the study had already received these checks by the start of the study, and were therefore only eligible for those checks they had not yet received.

Data were analysed using SPSS for windows version 8.0 and STATA version 5. Comparisons of self reported safety practices at each CHS check were made between responders and non-responders to the postal questionnaire, using χ² tests and by calculating the odds ratio (OR) and 95% confidence interval (CI) for each safety practice, with the standard error adjusted for clustering. A subgroup analysis has been undertaken comparing safety practices between responders and non-responders who did not receive safety equipment as part of the study. The number of interventions received and the safety practices reported were not normally distributed. In order to compare the number of interventions and safety practices between those completing and those not completing the safety questionnaire, with adjustment for clustering, responders and non-responders have been dichotomised into two groups. The groups have been defined as having more than the median number of interventions or safety practices, or...
Table 1 Sociodemographic characteristics and history of previous injury in responders to baseline questionnaire

<table>
<thead>
<tr>
<th>Sociodemographic factors</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt of means tested benefit</td>
<td>246 (29.9)</td>
</tr>
<tr>
<td>No access to car</td>
<td>149 (18.1)</td>
</tr>
<tr>
<td>Non-owner occupation</td>
<td>231 (28.1)</td>
</tr>
<tr>
<td>Overcrowding*</td>
<td>64 (7.8)</td>
</tr>
<tr>
<td>Four or more children in family</td>
<td>55 (6.7)</td>
</tr>
<tr>
<td>Single parent</td>
<td>89 (10.8)</td>
</tr>
<tr>
<td>Teenage mother</td>
<td>114 (13.9)</td>
</tr>
<tr>
<td>Ethnic group non-white</td>
<td>52 (6.3)</td>
</tr>
<tr>
<td>Residence in deprived area†</td>
<td>96 (11.7)</td>
</tr>
</tbody>
</table>

*Overcrowding defined as more than one person per room.
†Residence in a deprived area defined as living in a ward with a Jarman score above 30.

Results

The results relate only to the intervention group of the study. The response rate to the questionnaire was 73.2% (n = 823). Non-responders numbered 301, 24 of whom left Nottingham before the interventions commenced. The sociodemographic characteristics of responders to the questionnaire are shown in Table 1. Non-responders comprised 18% of those receiving advice at each of the CHS checks (57/315 at the 6–9 months check, 82/463 at the 12–15 month check, and 95/535 at the 18–24 month check). A third or fewer non-responders received advice at any of the CHS checks (21% at the 6–9 month check, 30% at the 12–15 month check, and 34% at the 18–24 month check). Overall, responders to the questionnaire were much more likely to have received greater than the median number of interventions than non-responders (OR = 8.66, 95% CI 5.34 to 14.03; p<0.001).

There was no difference between the self reported practices among responders and non-responders to the questionnaire at the 6–9 month check. Tables 2 and 3 show the safety practices reported by responders and non-responders to the questionnaire at the 12–15 month and the 18–24 month checks respectively. Responders to the questionnaire are more likely to report owning some items of safety equipment than non-responders at both time points. Responders were more likely to have more than the median number of safety practices than non-responders at both the 12–15 month (OR 2.12, 95% CI 1.10 to 4.09; p=0.03) and the 18–24 month check (OR 1.86, 95% CI 1.16 to 2.98; p=0.01).

As the interventions included the provision of low cost safety equipment, we have repeated the analyses among those who did not receive equipment from the study. This produced similar results. No differences were found between safety practices at the 6–9 month CHS check (n = 272). At the 12–15 month check (n = 411), responders were more likely to report having a stair gate (OR 3.14, 95% CI 1.89 to 5.21; p<0.001) and socket covers (OR 2.44, 95% CI 1.76 to 3.40; p<0.001). At the 18–24 month check (n = 471) responders were more likely to report having socket covers (OR 2.27, 95% CI 1.38 to 3.74; p=0.001).

Table 2 Frequency of safety practices reported at 12–15 month child health surveillance check among responders and non-responders to safety questionnaire

<table>
<thead>
<tr>
<th>Safety practice</th>
<th>Frequency among responders (n=381) (%)</th>
<th>Frequency among non-responders (n=82) (%)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has fireguard</td>
<td>247 (65.5) [4]</td>
<td>47 (58.8) [2]</td>
<td>1.33 (0.82 to 2.18)</td>
</tr>
<tr>
<td>Has stair gate</td>
<td>338 (88.7) [4]</td>
<td>60 (74.1) [1]</td>
<td>2.75 (1.81 to 4.16)</td>
</tr>
<tr>
<td>Has smoke alarm</td>
<td>343 (90.0) [4]</td>
<td>67 (81.7) [1]</td>
<td>2.02 (1.08 to 3.78)</td>
</tr>
<tr>
<td>Has safety catches on windows</td>
<td>242 (64.2) [4]</td>
<td>51 (63.0) [1]</td>
<td>1.05 (0.69 to 1.62)</td>
</tr>
<tr>
<td>Has cupboard locks</td>
<td>212 (55.8) [1]</td>
<td>38 (46.9) [1]</td>
<td>1.43 (0.96 to 2.12)</td>
</tr>
<tr>
<td>Has socket covers</td>
<td>310 (82.0) [3]</td>
<td>55 (67.9) [1]</td>
<td>2.16 (1.53 to 3.04)</td>
</tr>
<tr>
<td>Always stores medicines out of reach of child</td>
<td>360 (94.5) [1]</td>
<td>76 (92.7) [1]</td>
<td>1.35 (0.52 to 3.50)</td>
</tr>
<tr>
<td>Always stores sharp objects out of reach of child</td>
<td>359 (94.5) [1]</td>
<td>77 (93.0) [1]</td>
<td>1.11 (0.46 to 2.69)</td>
</tr>
<tr>
<td>Always stores cleaning products out of reach</td>
<td>243 (64.1) [2]</td>
<td>52 (64.2) [1]</td>
<td>1.00 (0.61 to 1.64)</td>
</tr>
<tr>
<td>Has curly kettle flex/cordless kettle</td>
<td>96 (25.7) [7]</td>
<td>16 (20.0) [2]</td>
<td>1.38 (0.87 to 2.19)</td>
</tr>
<tr>
<td>Has safe garden</td>
<td>243 (65.4) [10]</td>
<td>58 (70.7) [1]</td>
<td>0.79 (0.49 to 1.26)</td>
</tr>
</tbody>
</table>

[] = Missing data points.

Table 3 Frequency of safety practices reported at 18–24 month child health surveillance check among responders and non-responders to safety questionnaire

<table>
<thead>
<tr>
<th>Safety practice</th>
<th>Frequency among responders (n=440) (%)</th>
<th>Frequency among non-responders (n=95) (%)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has fireguard</td>
<td>280 (66.5) [19]</td>
<td>57 (61.3) [2]</td>
<td>1.25 (0.56 to 2.81)</td>
</tr>
<tr>
<td>Has stair gate</td>
<td>367 (85.2) [9]</td>
<td>76 (80.9) [1]</td>
<td>1.36 (1.00 to 2.05)</td>
</tr>
<tr>
<td>Has smoke alarm</td>
<td>396 (92.1) [10]</td>
<td>84 (88.4) [1]</td>
<td>1.53 (1.06 to 3.55)</td>
</tr>
<tr>
<td>Has safety catches on windows</td>
<td>303 (71.6) [17]</td>
<td>62 (66.7) [2]</td>
<td>1.26 (0.78 to 2.05)</td>
</tr>
<tr>
<td>Has cupboard locks</td>
<td>275 (64.0) [10]</td>
<td>48 (51.1) [1]</td>
<td>1.70 (0.95 to 3.03)</td>
</tr>
<tr>
<td>Has socket covers</td>
<td>357 (83.8) [14]</td>
<td>66 (70.2) [1]</td>
<td>2.19 (1.34 to 3.61)</td>
</tr>
<tr>
<td>Always stores medicines out of reach of child</td>
<td>415 (97.0) [12]</td>
<td>94 (98.8) [1]</td>
<td>0.34 (0.04 to 2.63)</td>
</tr>
<tr>
<td>Always stores matches and lighters out of reach of child</td>
<td>405 (95.7) [17]</td>
<td>91 (95.8) [1]</td>
<td>0.99 (0.33 to 2.93)</td>
</tr>
<tr>
<td>Always stores cleaning products out of reach</td>
<td>280 (65.9) [15]</td>
<td>65 (68.4) [1]</td>
<td>0.89 (0.51 to 1.58)</td>
</tr>
<tr>
<td>Has curly kettle flex/cordless kettle</td>
<td>157 (34.0) [37]</td>
<td>22 (25.0) [7]</td>
<td>1.95 (0.80 to 2.98)</td>
</tr>
<tr>
<td>Always keeps pans on cooker out of reach of child</td>
<td>407 (94.9) [11]</td>
<td>90 (94.7) [1]</td>
<td>1.03 (0.44 to 2.40)</td>
</tr>
<tr>
<td>Has safe garden</td>
<td>343 (80.9) [16]</td>
<td>78 (84.8) [3]</td>
<td>0.76 (0.41 to 1.41)</td>
</tr>
</tbody>
</table>

[] = Missing data points.
Discussion
Safety equipment possession does appear to differ between responders and non-responders to a safety questionnaire. Responders are 2–3 times more likely to report possessing stair gates and socket covers locks when their child is 12–24 months of age than non-responders. In addition responders report a higher number of safe practices than non-responders.

While our results suggest differences in safety practices between responders and non-responders, there are several possible explanations for this. Firstly completing a questionnaire may raise awareness of home safety and may change behaviour by encouraging parents to obtain safety equipment. If this was the case, the greatest difference between responders and non-responders would be expected at the first CHS check after completion of the questionnaire. However, we were unable to find any differences between the groups at the 6–9 month check. Completion of the questionnaire may encourage parents to obtain safety equipment in the future; for example, when the child becomes more mobile. Alternatively parents who are more likely to obtain equipment as the child becomes more mobile may be more likely to respond to the questionnaire.

Secondly, the safety practices reported on the questionnaire at the CHS checks were self reported; and as such may overestimate safe practice.15 Responding families may have over reported owning safety equipment to a greater degree than non-responding families. It seems unlikely that families would report owning equipment they do not possess as it was available at low cost in the study. It also seems unlikely that responders, who were more likely to request, and to have a home safety check (27.3% responders vs 4.5% non-responders, χ² = 65.9, 1 df; p<0.001), would report having items of equipment they did not possess, when they will be visited by the health visitor for a home safety check.

The differential safety equipment reporting cannot be explained by receipt of the study interventions as the findings were similar for parents who did not obtain safety equipment as part of the study. We have not been able to find any published work that has examined safety practices among non-responders to a safety questionnaire with which to compare our results. There is a large body of work which suggests that responders to surveys differ from non-responders in terms of socio-demographic characteristics, ethnicity, and interest in the topic covered in the questionnaire.1–11 This suggests that non-responders tend to belong to groups that are likely to have a higher risk of unintentional injury. It would therefore not be surprising to find that non-responders differed in terms of safety practices as well. Furthermore, it is a weakness of our study that we were only able to examine safety practices in non-responders who attended CHS checks. Parents not attending CHS checks are likely to differ from those who attend. Lower rates of uptake of child immunisation have been found among the socioeconomically disadvantaged.16–18

Key points
- Safety surveys are often used for planning or evaluating injury prevention programmes, but little work exists examining the safety practices of non-responders to safety surveys.
- Analysis of data from this study suggests a response bias does exist and that non-responders are less likely to report owning several items of safety equipment than responders.
- Further work is needed to confirm these findings.
- Extrapolating the results of safety surveys to the population as a whole may lead to an over-estimation of safety equipment possession.
- Where possible, planners and evaluators should consider collecting data on socio-demographic characteristics, safety practices, and injury occurrence among non-responders.

Non-attendance at child health clinics has been found to be associated with older maternal age,16 and in several studies with socio-economic disadvantage.20 21 Therefore, it is possible that non-attending non-responders may report fewer safety practices than those attending. If this were the case, our findings would represent a conservative estimate of the difference between responders and non-responders.

We conclude that our study suggests that non-responding families are less likely to report possessing some items of safety equipment and that further work confirming this finding would be useful. If this is confirmed, extrapolating the results of safety surveys to the population as a whole may be of questionable validity and may lead to over estimation of safety equipment possession. Wherever possible, information on socio-demographic characteristics, safety practices, and the injury experiences of non-responders should be sought to help inform the generalisability of such surveys.

We would like to thank Carol Coupland for advice on analysis of clustered data.

15 Scott I. You can’t believe all that you’re told: the issue of unvalidated questionnaires. *Inj Prev* 1997;3:5–6.

6th World Conference on Injury Prevention and Control

12–15 May 2002, Montréal, Canada

The Organizing Committee is very pleased to invite you to take part in the 6th World Conference on Injury Prevention and Control which will be held from May 12 to 15, 2002 at the Montréal Convention Centre. This meeting, on the theme of Injuries, Suicide and Violence: Building Knowledge, Policies and Practices to Promote a Safer World, will be an excellent opportunity for the participants to exchange information and forge links between sectors (health, transportation, safety, justice, etc) and, together, find new ways to improve the safety of populations and reduce the burden of injuries. The conference will deal first of all with safety problems in various contexts: on the road, in the workplace, in the home, and during recreational and sports activities, as well as the problems of suicide, violence, and post-trauma care. Each of these themes will be discussed extensively during the three days of the conference, which will include oral presentations, round tables, debates and presentations on the most recent scientific advances.

In addition, cross disciplinary topics that are of interest to all the participants will be presented in plenary sessions to stimulate exchange between sectors and fields of specialty. Finally, satellite conferences, courses, site visits, and exhibits will complete the program. To ensure the quality of the scientific content of the conference, working groups bringing together leaders from each field have been established.

For the second time, this conference will take place in the Americas, which is why we are extending a very special invitation to our colleagues from Latin America. Montréal is a beautiful city, well known for its joie de vivre. It has a reputation for hospitality and safety, and also has a cultural heritage that is well worth discovering. We look forward to seeing you in Montréal in May 2002 at the 6th World Conference.

- For registration, accommodation, and abstract submission forms and for more information, please consult the conference web site at http://www.trauma2002.com or contact the Conference Secretariat at +1 514 848 1133 (fax +1 514 288 6469).
Do safety practices differ between responders and non-responders to a safety questionnaire?

D Kendrick, R Hapgood and P Marsh

Inj Prev 2001 7: 100-103
doi: 10.1136/ip.7.2.100

Updated information and services can be found at:
http://injuryprevention.bmj.com/content/7/2/100

These include:

References
This article cites 16 articles, 6 of which you can access for free at:
http://injuryprevention.bmj.com/content/7/2/100#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical trials (epidemiology) (117)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/